中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (12): 956-968.DOI: 10.5246/jcps.2021.12.082
徐银燕1, 朱敏2, 周开珩1, 宋涛涛1, 黄丽丽1,*()
收稿日期:
2021-08-10
修回日期:
2021-08-25
接受日期:
2021-09-29
出版日期:
2021-12-24
发布日期:
2021-12-20
通讯作者:
黄丽丽
作者简介:
基金资助:
Yinyan Xu1, Min Zhu2, Kaiheng Zhou1, Taotao Song1, Lili Huang1,*()
Received:
2021-08-10
Revised:
2021-08-25
Accepted:
2021-09-29
Online:
2021-12-24
Published:
2021-12-20
Contact:
Lili Huang
摘要:
炎症反应和氧化应激的增强会导致急性肺损伤(ALI), 控制炎症和氧化可改善ALI。本研究的目的是确定3,4-二羟基苯乙酮(1)是否通过抑制炎症和氧化来改善脂多糖(LPS)诱导的ALI。在本研究中, 化合物1降低了LPS诱导的RAW 264.7细胞炎性细胞因子和氧化应激。此外, 化合物1抑制LPS诱导RAW 264.7细胞p65磷酸化和p65核转位, 增加抗氧化蛋白核因子红细胞2相关因子2(Nrf-2)和血红素氧合酶-1(HO-1)的表达, 并能改善LPS诱导的ALI, 减少炎症细胞因子和抗氧化蛋白的表达, 以及核因子κB(NF-κB)信号通路激活。化合物1具有抗炎、抗氧化作用, 有望成为治疗ALI的有效药物。
Supporting:
徐银燕, 朱敏, 周开珩, 宋涛涛, 黄丽丽. 3,4-二羟基苯乙酮通过抗炎抗氧化作用缓解脂多糖诱导的急性肺损伤[J]. 中国药学(英文版), 2021, 30(12): 956-968.
Yinyan Xu, Min Zhu, Kaiheng Zhou, Taotao Song, Lili Huang. 3,4-Dihydroxyacetophenone alleviates lipopolysaccharide-induced acute lung injury as a potential anti-inflammatory and anti-oxidative agent[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(12): 956-968.
Figure 2. Compound 1 suppresses the LPS-induced inflammation and oxidative damage in RAW 264.7 cells. Compound 1 decreased the expressions of TNF-α (A), IL-1β (B), IL-2 (C), IL-6 (D), and IL-12 (E). GAPDH was used as an internal control. (F) Compound 1 decreased ROS levels in LPS-treated RAW 264.7 cells. ###P < 0.001 significantly different from the control group. ***P < 0.001, **P < 0.01, *P < 0.05 significantly different from the LPS group.
Figure 3. Effects of compound 1 on the NF-κB and Nrf-2/HO-1 signaling pathways in vitro. (A) The nuclear translocation of p65 was detected using immunofluorescence staining. (B) Compound 1 regulated the expressions of Nrf-2, HO-1, p-p65 and p-IκBα at the protein level. (C) The relative protein expression was calculated as the fold change of the control group. The results were presented as means ± SEM (n = 3–6). *P < 0.05, **P < 0.01.
Figure 4. Protective effects of compound 1 on LPS-induced ALI in mice. (A) Lung histopathological analysis was performed using hematoxylin and eosin staining to determine the protective effect on LPS-induced pathological damage. (B) The lung wet/dry weight ratio was calculated. (C) The total number of cells in BALF was calculated. (D) The protein concentrations in BALF were measured using a BCA protein assay kit. Control: control group; LPS: LPS group; 1: compound 1 alone group; 1 + LPS: compound 1 + LPS group. The results were presented as means ± SEM (n = 3–6). *P < 0.05, **P < 0.01, ***P < 0.001 vs. the LPS group.
Figure 5. Compound 1 inhibits LPS-induced secretion of IL-1β, IL-6, and TNF-α and oxidative damage in mice. The levels of TNF-α (A), IL-6 (B), and IL-1β (C) in BALF were measured by ELISA. The MDA content (D) and SOD activity (E) were determined as per the manufacturer’s protocol. Control: control group; LPS: LPS group; 1: compound 1 alone group; 1 + LPS: compound 1 + LPS group. Results were presented as means ± SEM (n = 3–6). *P < 0.05, **P < 0.01, ***P < 0.001 vs. the LPS group.
Figure 6. The NF-κB pathway is suppressed by compound 1 in the LPS-induced mice model. (A) Immunofluorescence staining with a p65 antibody was performed to detect the nuclear translocation of p65. (B) The levels of p-p65 and p-IκBα in lung tissues were measured by Western blotting analysis. (C) The relative protein expression was calculated as the fold change of the control group. The results were presented as means ± SEM (n = 3–6). **P < 0.01, ***P < 0.001.
[1] |
Gao, X.L.; Meng X.B.; Jiang Y.M.; Li, Z.J.; Ye, J. The protective effects of thalidomide derivative ZSN-12 on acute lung injury. J. Chin. Pharm. Sci. 2013, 22, 435–440.
|
[2] |
Lin, Y.T.; Qiu, D.P.; Huang, L.L.; Zhang, S.S.; Song, C.J.; Wang, B.B.; Wu, J.Z.; Chen, C.S. A novel chalcone derivative, L2H17, ameliorates lipopolysaccharide-induced acute lung injury via upregulating HO-1 activity. Int. Immunopharmacol. 2019, 71, 100–108.
|
[3] |
Dorward, D.A.; Lucas, C.D.; Doherty, M.K.; Chapman, G.B.; Scholefield, E.J.; Conway Morris, A.; Felton, J.M.; Kipari, T.; Humphries, D.C.; Robb, C.T.; Simpson, A.J.; Whitfield, P.D.; Haslett, C.; Dhaliwal, K.; Rossi, A.G. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax. 2017, 72, 928–936.
|
[4] |
Eltzschig, H.K.; Bratton, D.L.; Colgan, S.P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 2014, 13, 852–869.
|
[5] |
Hu, Y.; Lou, J.; Mao, Y.Y.; Lai, T.W.; Liu, L.Y.; Zhu, C.; Zhang, C.; Liu, J.; Li, Y.Y.; Zhang, F.; Li, W.; Ying, S.M.; Chen, Z.H.; Shen, H.H. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy. 2016, 12, 2286–2299.
|
[6] |
Takashima, K.; Matsushima, M.; Hashimoto, K.; Nose, H.; Sato, M.; Hashimoto, N.; Hasegawa, Y.; Kawabe, T. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir. Res. 2014, 15, 150.
|
[7] |
Wu, J.Z.; Li, J.L.; Cai, Y.P.; Pan, Y.; Ye, F.Q.; Zhang, Y.L.; Zhao, Y.J.; Yang, S.L.; Li, X.K.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 2011, 54, 8110–8123.
|
[8] |
Meng, L.; Li, L.Y.; Lu, S.; Li, K.; Su, Z.B.; Wang, Y.Y.; Fan, X.D.; Li, X.Y.; Zhao, G.Q. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol. Immunol. 2018, 94, 7–17.
|
[9] |
Imai, Y.; Kuba, K.; Neely, G.G.; Yaghubian-Malhami, R.; Perkmann, T.; van Loo, G.; Ermolaeva, M.; Veldhuizen, R.; Leung, Y.H.C.; Wang, H.L.; Liu, H.L.; Sun, Y.; Pasparakis, M.; Kopf, M.; Mech, C.; Bavari, S.; Peiris, J.S.M.; Slutsky, A.S.; Penninger, J.M. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008, 133, 235–249.
|
[10] |
Pei, X.F.; Zhang, X.J.; Chen, H.M. Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling. Biochem. Biophys. Res. Commun. 2019, 516, 270–277.
|
[11] |
Tian, C.; Chen, X.; Chang, Y.; Wang, R.; Ning, J.; Cui, C.; Liu, M. Abutilon theophrastiThe regulatory effect of flavonoids extracted from leaves on gene expression in LPS-induced ALI mice via the NF-κB and MAPK signaling pathways.Pharm. Biol. 2019, 57, 514–518.
|
[12] |
Wang, J.B.; Huang, L.L.; Cheng, C.C.; Li, G.; Xie, J.W.; Shen, M.Y.; Chen, Q.; Li, W.L.; He, W.F.; Qiu, P.H.; Wu, J.Z. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B. 2019, 9, 335–350.
|
[13] |
Zhang, H.Y.; Sha, J.C.; Feng, X.J.; Hu, X.Y.; Chen, Y.P.; Li, B.; Fan, H.G. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. Int. Immunopharmacol. 2019, 74, 105717.
|
[14] |
Zhao, B.; Gao, W.W.; Gao, X.; Leng, Y.; Liu, M.; Hou, J.B.; Wu, Y. Sulforaphane attenuates acute lung injury by inhibiting oxidative stress via Nrf2/HO-1 pathway in a rat sepsis model. Int. J. Clin. Exp. Pathol. 2017, 10, 9021–9028.
|
[15] |
Yang, H.; Lv, H.; Li, H.; Ci, X.; Peng, L. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun. Signal. 2019, 17, 62.
|
[16] |
Meng, X.L.; Hu, L.; Li, W.Q. Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedeberg's Arch. Pharmacol. 2019, 392, 1421–1433.
|
[17] |
Hu, Q.; Wang, Q.; Han, C.G.; Yang, Y. Sufentanil attenuates inflammation and oxidative stress in sepsis-induced acute lung injury by downregulating KNG1 expression. Mol. Med. Rep. 2020, 22, 4298–4306.
|
[18] |
Zhang, Y.L.; Liang, D.D.; Dong, L.L.; Ge, X.T.; Xu, F.L.; Chen, W.B.; Dai, Y.R.; Li, H.M.; Zou, P.; Yang, S.L.; Liang, G. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir. Res. 2015, 16, 1–13.
|
[19] |
Wang, J.; Liu, Y.T.; Xiao, L.; Zhu, L.P.; Wang, Q.J.; Yan, T.H. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation. 2014, 37, 2085–2090.
|
[20] |
Manicone, A.M. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert. Rev. Clin. Immunol. 2009, 5, 63–75.
|
[21] |
Goodman, R.B.; Pugin, J.; Lee, J.S.; Matthay, M.A. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 2003, 14, 523–535.
|
[22] |
Huang, L.L.; Wang, J.B.; Chen, L.P.; Zhu, M.; Wu, S.B.; Chu, S.H.; Zheng, Y.T.; Fan, Z.L.; Zhang, J.F.; Li, W.L.; Chen, D.H.; Yang, X.F.; Wang, S.C.; Qiu, P.H.; Wu, J.Z. Design, synthesis, and evaluation of NDGA analogues as potential anti-ischemic stroke agents. Eur. J. Med. Chem. 2018, 143, 1165–1173.
|
[23] |
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108.
|
[24] |
Feng, G.; Sun, B.; Liu, H.X.; Liu, Q.H.; Zhao, L.; Wang, T.L. EphA2 antagonism alleviates LPS-induced acute lung injury via Nrf2/HO-1, TLR4/MyD88 and RhoA/ROCK pathways. Int. Immunopharmacol. 2019, 72, 176–185.
|
[25] |
El Sayed, N.S.; Sayed, A.S. Protective effect of methylene blue on TNBS-induced colitis in rats mediated through the modulation of inflammatory and apoptotic signalling pathways. Arch. Toxicol. 2019, 93, 2927–2942.
|
[26] |
Chow, C.W.; Herrera Abreu, M.T.; Suzuki, T.; Downey, G.P. Oxidative stress and acute lung injury. Am. J. Respir. Cell Mol. Biol. 2003, 29, 427–431.
|
[27] |
Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558.
|
[28] |
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. 2013, 12, 86.
|
[29] |
Jamilloux, Y.; El Jammal, T.; Vuitton, L.; Gerfaud-Valentin, M.; Kerever, S.; Sève, P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2019, 18, 102390.
|
[30] |
Liu, C.Y.; Sun, J.; Xue, F.; Yi, Y.C.; Han, A.Q. Effect of 3, 4-dihydroxyacetophenone on endothelial dysfunction in streptozotocin-induced rats with type 2 diabetes. J. Cardiovasc. Pharmacol. 2015, 65, 22–27.
|
[31] |
Hui, Z.G.; Zhou, X.W.; Li, R.J. Effect of 3,4-dihydroxyacetophenone on endothelial dysfunction in obese rats. Pharm. Biol. 2015, 53, 1149–1154.
|
[32] |
Fan, H.N.; Chen, W.; Zhu, J.S.; Zhang, J.; Peng, S.Q. Toosendanin alleviates dextran sulfate sodium-induced colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling. Int. Immunopharmacol. 2019, 76, 105909.
|
[33] |
Duan, J.X.; Yang, Z.; Huang, J.; Zhu, Y.; Zhao, H.L.; Unwith, S.; Gao, X.; Lu, K.Z.; Ning, J.L. Inhibition of tyrosine kinases protects against lipopolysaccharide-induced acute lung injury by preventing nuclear export of Nrf2. J. Cell Biochem. 2019, 120, 12331–12339.
|
[34] |
Zhang, D.; Liu, J.; Wang, L.; Wang, J.; Li, W.; Zhuang, B.; Hou, J.; Liu, T. Effects of 3, 4-dihydroxyacetophenone on the hypercholesterolemia-induced atherosclerotic rabbits. Biol. Pharm. Bull. 2013, 36, 733–740.
|
[1] | 王涵, 李芳龙, 阿呷尔布, 梁晓霞, 更桑, 才让南迦. 西藏麻黄乙醇提取物及其不同极性组分的体外抗氧化活性研究[J]. 中国药学(英文版), 2023, 32(6): 478-486. |
[2] | 赵雅慧, 赵莉, 赵娟, 卢继业, 田薇, 胡金朋, 苏彬, 付立华, 郭然. 基于生物信息学分析探讨地塞米松通过上调TNFAIP3减轻烟雾吸入性急性肺损伤炎症反应的机制[J]. 中国药学(英文版), 2022, 31(9): 689-697. |
[3] | 解伟伟, 文旭清, 张德栋, 张玉倩, 张志清, 靳怡然, 杜英峰. 基于网络药理学的策略研究溪黄草治疗炎症疾病的药理机制[J]. 中国药学(英文版), 2022, 31(4): 250-263. |
[4] | 刘红菊, 李静, 谢慧仪, 王玲玲, 张志珍, 闫冲. Diaporisoindole B通过抑制MyD88/NF-κB/MAPKs通路对LPS诱导的RAW 264.7巨噬细胞发挥抗炎作用[J]. 中国药学(英文版), 2021, 30(8): 675-685. |
[5] | 赵爱红, 王天霞, 刘晓艳, 赵伟红, 马建苹, 杨秀伟, 郭涛, 张友波. 竹叶椒抗炎内生真菌的分离[J]. 中国药学(英文版), 2021, 30(7): 570-577. |
[6] | 乔自鹏, 王奇志, 刘建福, 王明元. 胜红蓟内生真菌乙酸乙酯提取物的抗氧化及抑菌活性研究[J]. 中国药学(英文版), 2021, 30(5): 421-433. |
[7] | 董馨, 王弘, 马飞祥, 高建萍, 陈世忠, 薛培凤. 基于在线HPLC-自由基清除检测-ESI-IT-TOF-MSn技术的蓝刺头抗氧化成分筛选及其构效关系研究[J]. 中国药学(英文版), 2021, 30(4): 267-279. |
[8] | 周北斗, 李佳莉, 黄堡城, 俞紫涵, 马泽通, 阮志鹏, 蔡其洪, 胡栋宝. 苯甲酸苯酯类化合物的合成与生物活性调查[J]. 中国药学(英文版), 2021, 30(11): 874-882. |
[9] | 黄晋, 杨玲馨, 杨宁, 袁博文, 张浩, 王梦月. 荨麻抑制前列腺增生药理作用研究[J]. 中国药学(英文版), 2020, 29(4): 236-243. |
[10] | 梁晓霞, 熊城, 高迎迎, 范巧佳. 天麻内生真菌提取物抗氧化活性及天麻素的测定[J]. 中国药学(英文版), 2020, 29(3): 206-213. |
[11] | 王石, 刘璐, 张友波, 徐嵬, 杨秀伟. 吴茱萸主要成分在人结肠腺癌细胞和RAW264.7巨噬细胞共培养模型中的肠道抗炎作用[J]. 中国药学(英文版), 2020, 29(12): 868-879. |
[12] | 吴柏林, 郝亚萌, 陈颖, 刘乾, 田超, 张志丽, 刘俊义, 王孝伟. 咖啡酸酯类衍生物作为神经保护剂的构效关系研究[J]. 中国药学(英文版), 2019, 28(9): 615-626. |
[13] | 宋爱伟, 吴鸿飞, 戴敏. 丹皮酚减缓动脉粥样硬化病变的形成及发展涉及脂质调节, 抗炎和抗氧化活性[J]. 中国药学(英文版), 2018, 27(8): 565-575. |
[14] | 孔秋云, 杭楠, 张超, 李树春, 李中军, 孙洋, 孟祥豹. 作用于炎症小体的α,β-不饱和酮类化合物的合成及活性评价[J]. 中国药学(英文版), 2018, 27(5): 295-306. |
[15] | 姜华, 杨景明, 曹玲, 贾桂枝, 戴红良, 孟祥才. 高温胁迫对防风药材药代动力学和药效的影响[J]. 中国药学(英文版), 2018, 27(2): 109-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||