[1] |
Saijo, N. Progress in treatment of small-cell lung cancer: role of CPT-11. Br. J. Cancer. 2003, 89, 2178–2183.
|
[2] |
Pinsky, P.F.; Black, A.; Grubb, R.; Crawford, E.D.; Andriole, G.; Thompson, I.; Parnes, H. Projecting prostate cancer mortality in the PCPT and REDUCE chemoprevention trials. Cancer. 2013, 119, 593–601.
|
[3] |
O’Reilly, S.; Kennedy, M.J.; Rowinsky, E.K.; Donehower, R.C. Vinorelbine and the topoisomerase 1 inhibitors: Current and potential roles in breast cancer chemotherapy. Breast Cancer Res. Treat. 1995, 33, 1–17.
|
[4] |
Rudolf, E.; Rudolf, K.; Cervinka, M. Camptothecin induces p53-dependent and -independent apoptogenic signaling in melanoma cells. Apoptosis. 2011, 16, 1165–1176.
|
[5] |
Slichenmyer, W.J.; Rowinsky, E.K.; Donehower, R.C.; Kaufmann, S.H. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst. 1993, 85, 271–291.
|
[6] |
Dora, C.L.; Alvarez-Silva, M.; Trentin, A.G.; de Faria, T.J.; Fernandes, D.; da Costa, R.; Stimamiglio, M.; Lemos-Senna, E. Evaluation of antimetastatic activity and systemic toxicity of camptothecin-loaded microspheres in mice injected with B16-F10 melanoma cells. J. Pharm. Pharm. Sci. 2006, 9, 22–31.
|
[7] |
Wu, C.; Zhang, Y.; Yang, D.Q.; Zhang, J.F.; Ma, J.J.; Cheng, D.; Chen, J.M.; Deng, L. Novel SN38 derivative-based liposome as anticancer prodrug: an in vitro and in vivo study. Int. J. Nanomed. 2019, 14, 75–85.
|
[8] |
Omar, R.; Bardoogo, Y.L.; Corem-Salkmon, E.; Mizrahi, B. Amphiphilic star PEG-Camptothecin conjugates for intracellular targeting. J. Control. Release. 2017, 257, 76–83.
|
[9] |
Yao, D.F.; Li, S.; Zhu, X.M.; Wu, J.C.; Tian, H. Tumor-cell targeting polydiacetylene micelles encapsulated with an antitumor drug for the treatment of ovarian cancer. Chem. Commun. Camb. Engl. 2017, 53, 1233–1236.
|
[10] |
Liu, L.; Wu, Q.J.; Ma, X.L.; Xiong, D.K.; Gong, C.Y.; Qian, Z.Y.; Zhao, X.; Wei, Y.Q. Camptothecine encapsulated composite drug delivery system for colorectal peritoneal carcinomatosis therapy: Biodegradable microsphere in thermosensitive hydrogel. Colloids Surf. B Biointerfaces. 2013, 106, 93–101.
|
[11] |
Lundberg, B.B. Biologically active camptothecin derivatives for incorporation into liposome bilayers and lipid emulsions. Anti. Cancer Drug Des. 1998, 13, 453–461.
|
[12] |
Xu, C.R.; Qiu, L.; Pan, C.Y.; Hong, C.Y.; Hao, Z.Y. Efficient synthesis of polymer prodrug by thiol-acrylate Michael addition reaction and fabrication of pH-responsive prodrug nanoparticles. Bioconjugate Chem. 2018, 29, 3203–3212.
|
[13] |
Wang, L.L.; Zhang, J.; Song, M.J.; Tian, B.C.; Li, K.K.; Liang, Y.; Han, J.T.; Wu, Z.M. A shell-crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity. Colloids Surf. B Biointerfaces. 2017, 152, 1–11.
|
[14] |
Zhao, D.; Zhang, H.; Tao, W.; Wei, W.; Sun, J.; He, Z. A rapid albumin-binding 5-fluorouracil prodrug with a prolonged circulation time and enhanced antitumor activity. Biomater. Sci. 2017, 5, 502–510.
|
[15] |
Du, J.Z.; Lane, L.A.; Nie, S.M. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release. 2015, 219, 205–214.
|
[16] |
Sun, J.J.; Liu, Y.H.; Chen, Y.C.; Zhao, W.C.; Zhai, Q.Y.; Rathod, S.; Huang, Y.X.; Tang, S.Q.; Kwon, Y.T.; Fernandez, C.; Venkataramanan, R.; Li, S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J. Control. Release. 2017, 258, 43–55.
|
[17] |
Zhou, Z.S.; Li, G.Y.; Wang, N.R.; Guo, F.; Guo, L.; Liu, X.Y. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids Surf. B Biointerfaces. 2018, 172, 136–142.
|
[18] |
Salmaso, S.; Bersani, S.; Scomparin, A.; Balasso, A.; Brazzale, C.; Barattin, M.; Caliceti, P. A novel soluble supramolecular system for sustained rh-GH delivery. J. Control. Release. 2014, 194, 168–177.
|
[19] |
Hou, X.Y.; Zhang, W.J.; He, M.Y.; Lu, Y.B.; Lou, K.Y.; Gao, F. Preparation and characterization of β-cyclodextrin grafted N-maleoyl chitosan nanoparticles for drug delivery. Asian J. Pharm. Sci. 2017, 12, 558–568.
|
[20] |
Basílio, N.; Gómez, B.; García-Río, L. P-sulfonatocalix [6]arene-dodecyltrimethylammonium supramolecular amphiphilic system: relationship between calixarene and micelle concentration. Langmuir. 2017, 33, 13008–13013.
|
[21] |
Wu, D.; Li, Y.; Yang, J.; Shen, J.; Zhou, J.; Hu, Q.L.; Yu, G.C.; Tang, G.P.; Chen, X.Y. Supramolecular nanomedicine constructed from cucurbit [8]uril-based amphiphilic brush copolymer for cancer therapy. ACS Appl. Mater. Interfaces. 2017, 9, 44392–44401.
|
[22] |
Wu, D.; Li, Y.; Shen, J.; Tong, Z.; Hu, Q.; Li, L.; Yu, G. Supramolecular chemotherapeutic drug constructed from pillararene-based supramolecular amphiphile. Chem. Commun. Camb. Engl. 2018, 54, 8198–8201.
|
[23] |
Chen, Y.Z.; Huang, Y.K.; Qin, D.D.; Liu, W.C.; Song, C.; Lou, K.Y.; Wang, W.; Gao, F. Β-cyclodextrin-based inclusion complexation bridged biodegradable self-assembly macromolecular micelle for the delivery of paclitaxel. PLoS One. 2016, 11, e0150877. DOI:10.1371/journal.pone.0150877.
|
[24] |
Ma, M.F.; Luan, T.X.; Yang, M.M.; Liu, B.; Wang, Y.J.; An, W.; Wang, B.; Tang, R.P.; Hao, A.Y. Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter. 2017, 13, 1534–1538.
|
[25] |
Xu, L.; Zhang, W.Y.; Cai, H.B.; Liu, F.; Wang, Y.; Gao, Y.; Zhang, W.A. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J. Mater. Chem. B. 2015, 3, 7417–7426.
|
[26] |
Ji, X.F.; Ahmed, M.; Long, L.L.; Khashab, N.M.; Huang, F.H.; Sessler, J.L. Adhesive supramolecular polymeric materials constructed from macrocycle-based host-guest interactions. Chem. Soc. Rev. 2019, 48, 2682–2697.
|
[27] |
Cheng, Q.; Li, S.K.; Ma, Y.L.; Yin, H.; Wang, R.B. pH-Responsive supramolecular DOX-dimer based on cucurbit[8]uril for selective drug release. Chin. Chem. Lett. 2020, 31, 1235–1238.
|
[28] |
Yang, C.; Liu, S.Q.; Venkataraman, S.; Gao, S.J.; Ke, X.Y.; Chia, X.T.; Hedrick, J.L.; Yang, Y.Y. Structure-directing star-shaped block copolymers: Supramolecular vesicles for the delivery of anticancer drugs. J. Control. Release. 2015, 208, 93–105.
|
[29] |
Fukushima, K.; Pratt, R.C.; Nederberg, F.; Tan, J.P.K.; Yang, Y.Y.; Waymouth, R.M.; Hedrick, J.L. Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly. Biomacromolecules. 2008, 9, 3051–3056.
|
[30] |
Hu, Q.D.; Tang, G.P.; Chu, P.K. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 2014, 47, 2017–2025.
|
[31] |
Wu, Q.G.; Du, F.; Luo, Y.; Lu, W.; Huang, J.; Yu, J.H.; Liu, S.Y. Poly(ethylene glycol) shell-sheddable nanomicelle prodrug of camptothecin with enhanced cellular uptake. Colloids Surf. B Biointerfaces. 2013, 105, 294–302.
|
[32] |
Zhang, Q.Q.; He, J.L.; Zhang, M.Z.; Ni, P.H. A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery. J. Mater. Chem. B. 2015, 3, 4922–4932.
|
[33] |
He, X.; Cai, K.M.; Zhang, Y.; Lu, Y.F.; Guo, Q.; Zhang, Y.J.; Liu, L.S.; Ruan, C.H.; Chen, Q.J.; Chen, X.L.; Li, C.; Sun, T.; Cheng, J.J.; Jiang, C. Dimeric prodrug self-delivery nanoparticles with enhanced drug loading and bioreduction responsiveness for targeted cancer therapy. ACS Appl. Mater. Interfaces. 2018, 10, 39455–39467.
|
[34] |
Li, W.Q.; Fan, X.S.; Lv, X.; Du, J.; Liu, Q.; Lin, J.T.; Hu, Z.G.; Li, Z.B. Reduction-responsive shell cross-linked micelles derived from amphiphilic triblock copolymer as anticancer drug delivery carrier. Mater. Sci. Eng. C. 2019, 96, 383–390.
|
[35] |
Lee, M.H.; Kim, J.Y.; Han, J.H.; Bhuniya, S.; Sessler, J.L.; Kang, C.; Kim, J.S. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc. 2012, 134, 12668–12674.
|