[1] Libby, P.; Aikawa, M. Stabilization of atherosclerotic plaque: new mechanisms and clinical targets. Nat. Med. 2002, 8, 1257–1262.
[2] Lusis, A.J. Atherosclerosis. Nature. 2000, 407, 233–241.
[3] Kinkade, K.; Streeter, J.; Miller, F.J. Inhibition of NADPH Oxidase by Apocynin Attenuates Progression of Atherosclerosis. Int. J. Mol. Sci. 2013, 14, 17017–17028.
[4] Chobanian, A.V. Single risk factor intervention may be inadequate to inhibit atherosclerosis progression when hypertension and hypercholesterolemia coexist. Hypertension. 1991, 18, 130–131.
[5] Stoll, G.; Bendszus, M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke. 2006, 37, 1923–1932.
[6] Yung, L.M.; Leung, F.P.; Yao, X.; Chen, Z.Y.; Huang, Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol. Disord. Drug Targets. 2006, 6, 1–19.
[7] Bao, M.H; Zhang, Y.W.; Zhou, H.H. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-κB pathway. J. Ethnopharmacol. 2013, 146, 543–551.
[8] Shi, L.; Fan, P.S.; Fang, J.X.; Han, Z.X. Inhibitory effects of paeonol on experimental atherosclerosis and platelet aggregation of rabbit. Acta Pharmacol. Sin. 1998, 9, 555–558.
[9] Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 2007, 14, 778–784.
[10] Sun, G.P.; Wang, H.; Xu, S.P.; Wu, Q.; Chen, Z.D.; Wei, W. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-α production. Eur. J. Pharmacol. 2008, 584, 246–252.
[11] Pan, L.L.; Dai, M. Paeonol from Paeonia suffruticosa prevents TNF-alpha-induced monocytic cell adhesion to rat aortic endothelial cells by suppression of VCAM-1 expression. Phytomedicine Inter. J. Phytotherapy Phytopharmacology. 2009, 16, 1027–1032.
[12] Liu, Y.R.; Chen, J.J.; Dai, M. Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-αrelease. Acta Pharmacol. Sin. 2014, 35, 483–488.
[13] Wu, H.F.; Su, X.F.; Dai, M. Paeonol Inhibits Overpro-liferation of VSMCs in ox-LDL-Injured co-cultured System by Suppression of ET-1 Expression. Lat. Am. J. Pharm. 2015, 34, 1858–1865.
[14] Dai, M.; Zhi, X.M.; Peng, D.Y.; Liu, Q.Y. Inhibitory Effect of Paeonol on Experimental Atherosclerosis in Quails. China J. Chin. Mater. Med. 1999, 24, 488–490.
[15] Li, H.K.; Dai, M.; Jia, W. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta Med. 2009, 75, 7–11.
[16] Shan, L.M.; Zhang, J.C.; Zhao, Y.L.; Wang, H. Primary Mechanisms for Novel Compound Pivanampeta Against Atherosclerosis in Rat and Rabbit Model of Atherosclerosis. J. Chin. Pharm. Sci. 2004, 13, 1.
[17] Getz, G.S.; Reardon, C.A. Animal models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1104–1115.
[18] Kuehn, C.; Tauchi, M.; Stumpf, C.; Daniel, C.; Bäuerle, T.; Schwarz, M.; Kerek, F.; Steinkasserer, A.; Zinser, E.; Achenbach, S.; Dietel, B. Suppression of proatherogenic leukocyte interactions by MCS-18-Impact on advanced atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2016, 245, 101–110.
[19] Zhang, S.H.; Reddick, R.L.; Piedrahita, J.A.; Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992, 258, 468–471.
[20] Nakashima, Y.; Plump, A.S.; Raines, E.W.; Breslow, J.L.; Ross, R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 1994, 14, 133–140.
[21] Nagarajan, S.; Burris, R.L.; Stewart, B.W.; Wilkerson, J.E.; Badger, T.M. Dietary soy protein isolate ameliorates atherosclerotic lesions in apolipoprotein E-deficient mice potentially by inhibiting monocyte chemoattractant protein-1 expression. J. Nutr. 2008, 138, 332–337.
[22] Choi, S.H.; Chae, A.; Miller, E.; Ntanios, F.; DeMaria, A.N.; Nissen, S.E.; Witztum, J.L.; Tsimikas, S. Relationship Between Biomarkers of Oxidized Low-Density Lipoprotein, Statin Therapy, Quantitative Coronary Angiography, and Atheroma Volume: Observations From the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) Study. J. Am. Coll. Cardiol. 2008, 52, 24–32.
[23] Meir, E. Leitersdorf, Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1006–1014.
[24] Wang, Z.H.; Li, Y.F.; Guo, Y.Q. β3-Adrenoceptor activation attenuates atherosclerotic plaque formation in ApoE–/– mice through lowering blood lipids and glucose. Acta Pharmacol. Sin. 2013, 34, 1156–1163.
[25] Tabet, F.; Rye, K.A. High-density lipoproteins, inflammation and oxidative stress. Clin. Sci.(Lond). 2009, 116, 87–98.
[26] Mcneil, C.J.; Beattie, J.H.; Gordon, M.J.; Pirie, L.; Duthie, S.J. Nutritional B vitamin deficiency disrupts lipid metabolism causing accumulation of proatherogenic lipoproteins in the aorta adventitia of ApoE null mice. Mol. Nutr. Food Res. 2012, 56, 1122–1130.
[27] Ross, R. Atherosclerosis-An Inflammatory Disease. N. Engl. J. Med. 1999, 340, 115–126.
[28] Weber, C.; Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422.
[29] Libby, P. Inflammation in atherosclerosis. Nature. 2002, 420, 868–874.
[30] Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, ox-LDL, and atherosclerosis. Med. Inf. 2013, 5, 519–530.
[31] Gotsman, I.; Stabholz, A.; Planer, D.; Pugatsch, T.; Lapidus, L.; Novikov, Y.; Masrawa, S.; Soskolne, A.; Lotan, C. Serum cytokine tumor necrosis factoralpha and interleukin-6 associated with the severity of coronary artery disease: indicators of an active inflammatory burden? Isr. Med. Assoc. J. 2008, 10, 494–498.
[32] Victor, V.M.; Apostolova, N.; Herance, R.; Hernandez-Mijares, A.; Rocha, M. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med. Chem. 2009, 16, 4654–667.
[33] Verreth, W.; De-Keyzer, D.P.; Geeraert, B.; Mertens, A.; Herregods, M.C.; Smith, G.; Desjardins, F.; Balligand, J.L.; Holvoet, P. Rosuvastatin restores superoxide dismutase expression and inhibits accumulation of oxidized LDL in the aortic arch of obese dyslipidemic mice. Br. J. Pharmacol. 2007, 151, 347–355.
[34] Cybulsky, M.I.; Iiyama, K.; Li, H.; Zhu, S.; Chen, M.; Iiyama, M.; Davis, V.; Gutierrez-Ramos, J.C.; Connelly, P.W.; Milstone, D.S. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 2001, 107, 1255–1262.
[35] Johnson, J.L.; Devel, L.; Czarny, B.; George, S.J.; Jackson, C.L.; Rogakos, V.; Beau, F.; Yiotakis, A.; Newby, A.C.; Dive, V. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 528–535.
[36] Halade, G.V.; Jin, Y.F.; Lindsey, M.L. Matrix metallo-proteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol. Ther. 2013, 139, 32–40. |