[1] |
The Pharmacopeia Commission of People’s Republic of China, Pharmacopoeia of the People’s Republic of China, Chinese Medical Science and Technology Press, Beijing, 2010. Appendix III 26.
|
[2] |
Wan, J.; Liu, M.; Jiang, H.Y.; Yang, J.; Du, X.; Li, X.N.; Wang, W.G.; Li, Y.; Pu, J.X.; Sun, H.D. Bioactive ent-kaurane diterpenoids from Isodon serra. Phytochemistry. 2016, 130, 244–251.
|
[3] |
Wang, W.Q.; Xuan, L.J. Ent-6,7-Secokaurane diterpenoids from Rabdosia serra and their cytotoxic activities. Phytochemistry. 2016, 122, 119–125.
|
[4] |
Tang, H.M.; Chen, J.N.; Zhang, Y.; Lai, X.P.; Huang, S. Simultaneous determination of eight water-soluble compositions in Isodon serra from different origins by HPLC. Chin. J. Pharm. Anal. 2015, 35, 228–234.
|
[5] |
Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep. 2006, 23, 673–698.
|
[6] |
Liu, P.W.; Du, Y.F.; Zhang, X.W.; Sheng, X.N.; Shi, X.W.; Zhao, C.C.; Zhu, H.; Wang, N.; Wang, Q.; Zhang, L.T. Rapid analysis of 27 components of isodon serra by LC-ESI-MS-MS. Chromatographia. 2010, 72, 265–273.
|
[7] |
Yang, Y.S.; Sun, H.D.; Zhou, Y.P.; Ji, S.Y.; Li, M.L. Effects of three diterpenoids on tumor cell proliferation and telomerase activity. Nat. Prod. Res. 2009, 23, 1007–1012.
|
[8] |
Jin, Y.R.; Du, Y.F.; Shi, X.W.; Liu, P.W. Simultaneous quantification of 19 diterpenoids in Isodon amethystoides by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 53, 403–411.
|
[9] |
Huang, W.H.; Liang, Y.Y.; Wang, J.J.; Li, G.Q.; Wang, G.C.; Li, Y.L.; Chung, H.Y. Anti-angiogenic activity and mechanism of kaurane diterpenoids from Wedelia chinensis. Phytomedicine. 2016, 23, 283–292.
|
[10] |
Yang, L.; Zhang, Y.B.; Chen, L.F.; Chen, N.H.; Wu, Z.N.; Jiang, S.Q.; Jiang, L.; Li, G.Q.; Li, Y.L.; Wang, G.C. New labdane diterpenoids from Croton laui and their anti-inflammatory activities. Bioorg. Med. Chem. Lett. 2016, 26, 4687–4691.
|
[11] |
Niu, C.S.; Li, Y.; Liu, Y.B.; Ma, S.G.; Li, L.; Qu, J.; Yu, S.S. Analgesic diterpenoids from the twigs of Pieris Formosa. Tetrahedron. 2016, 72, 44–49.
|
[12] |
Liu, Z.G.; Li, Z.L.; Li, D.H.; Li, N.; Bai, J.; Zhao, F.; Meng, D.L.; Hua, H.M. Ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata with their inhibitory activities on LPS-induced NO production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2016, 26, 1–5.
|
[13] |
Tiwari, N.; Thakur, J.; Saikia, D.; Gupta, M.M. Antitubercular diterpenoids from Vitex trifolia. Phytomedicine. 2013, 20, 605–610.
|
[14] |
Chen, S.J.; Cui, M.C. Systematic understanding of the mechanism of salvianolic acid A via computational target fishing. Molecules. 2017, 22, 644.
|
[15] |
Zhai, L.; Ning, Z.W.; Huang, T.; Wen, B.; Liao, C.H.; Lin, C.Y.; Zhao, L.; Xiao, H.T.; Bian, Z.X. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: a lipidomics-based network pharmacology study. Front. Pharmacol. 2018, 9, 973.
|
[16] |
Hutchinson, L.; Kirk, R. High drug attrition rates—where are we going wrong? Nat. Rev. Clin. Oncol. 2011, 8, 189–190.
|
[17] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[18] |
Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol. 2011, 5, S10.
|
[19] |
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120.
|
[20] |
Vitali, F.; Mulas, F.; Marini, P.; Bellazzi, R. Network-based target ranking for polypharmacological therapies. J. Biomed. Inform. 2013, 46, 876–881.
|
[21] |
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep. 2015, 32, 1249–1266.
|
[22] |
Musyoka, T.; Bishop, Ö.T. South African abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019, 24, 4036.
|
[23] |
Shaker, S.; Sang, J.; Yan, X.L.; Fan, R.Z.; Tang, G.H.; Xu, Y.K.; Yin, S. Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry. 2020, 176, 112395.
|
[24] |
Isca, V.M.S.; Ferreira, R.J.; Garcia, C.; Monteiro, C.M.; Dinic, J.; Holmstedt, S.; André, V.; Pesic, M.; dos Santos, D.J.V.A.; Candeias, N.R.; Afonso, C.A.M.; Rijo, P. Molecular docking studies of royleanone diterpenoids from plectranthus spp. as P-glycoprotein inhibitors. ACS Med. Chem. Lett. 2020, 11, 839–845.
|
[25] |
Bai, N.; He, K.; Zhou, Z.; Tsai, M.L.; Zhang, L.; Quan, Z.; Shao, X.; Pan, M.H.; Ho, C.T. Ent-kaurane diterpenoids from Rabdosia rubescens and their cytotoxic effects on human cancer cell lines. Planta Med. 2010, 76, 140–145.
|
[26] |
Musyoka, T.; Bishop, Ö.T. South African abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019, 24, 4036.
|
[27] |
Shaker, S.; Sang, J.; Yan, X.L.; Fan, R.Z.; Tang, G.H.; Xu, Y.K.; Yin, S. Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry. 2020, 176, 112395.
|
[28] |
Reyes-Gordillo, K.; Shah, R.; Arellanes-Robledo, J.; Cheng, Y.; Ibrahim, J.; Tuma, P.L. Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease. Cells. 2019, 8. 1337.
|
[29] |
Huang, X.F.; Cheng, W.B.; Jiang, Y.; Liu, Q.; Liu, X.H.; Xu, W.F.; Huang, H.T. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma. Int. Immunopharmacol. 2020, 83, 106423.
|
[30] |
Mussard, E.; Jousselin, S.; Cesaro, A.; Legrain, B.; Lespessailles, E.; Esteve, E.; Berteina-Raboin, S.; Toumi, H. Andrographis paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants. 2020, 9, 432.
|
[31] |
Lossi, L.; Cocito, C.; Alasia, S.; Merighi, A. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Mol. Neurodegener. 2016, 11, 34.
|
[32] |
Kozłowska, A.; Kozera, P.; Majewski, M.; Godlewski, J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis. 2018, 23, 484–491.
|
[33] |
Kunzmann, A.T.; Murray, L.J.; Cardwell, C.R.; McShane, C.M.; McMenamin, U.C.; Cantwell, M.M. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1490–1497.
|
[34] |
Körber, H.; Goericke-Pesch, S. Expression of PTGS2, PGFS and PTGFR during downregulation and restart of spermatogenesis following GnRH agonist treatment in the dog. Cell Tissue Res. 2019, 375, 531–541.
|
[35] |
Chen, X.; Vodanovic-Jankovic, S.; Johnson, B.; Keller, M.; Komorowski, R.; Drobyski, W.R. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007, 110, 3804–3813.
|
[36] |
Yin, X.W.; Liu, B.; Wei, H.X.; Wu, S.S.; Guo, L.J.; Xu, F.R.; Liu, T.T.; Bi, H.S.; Guo, D.D. Activation of the Notch signaling pathway disturbs the CD4+/CD8+, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm. Res. 2019, 68, 761–774.
|
[37] |
Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF paradox in cancer progression and immunotherapy. Front. Immunol. 2019, 10, 1818.
|
[38] |
Wu, H.Y.; Wang, W.G.; Jiang, H.Y.; Du, X.; Li, X.N.; Pu, J.X.; Sun, H.D. Cytotoxic and anti-inflammatory ent-kaurane diterpenoids from Isodon wikstroemioides. Fitoterapia. 2014, 98, 192–198.
|
[39] |
Jiang, S.; Du, J.; Kong, Q.; Li, C.; Li, Y.; Sun, H.; Pu, J.; Mao, B. A group of ent-kaurane diterpenoids inhibit hedgehog signaling and induce cilia elongation. PLoS One. 2015, 10, e0139830.
|
[40] |
Sarwar, M.S.; Xia, Y.X.; Liang, Z.M.; Tsang, S.W.; Zhang, H.J. Mechanistic pathways and molecular targets of plant-derived anticancer ent-kaurane diterpenes. Biomolecules. 2020, 10, 144.
|