中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (9): 720-735.DOI: 10.5246/jcps.2023.09.059
收稿日期:
2023-03-24
修回日期:
2023-04-12
接受日期:
2023-05-05
出版日期:
2023-09-30
发布日期:
2023-09-30
通讯作者:
晏子友
作者简介:
Gedi Zhang1, Gengxin Liu1, Ziyou Yan2,*()
Received:
2023-03-24
Revised:
2023-04-12
Accepted:
2023-05-05
Online:
2023-09-30
Published:
2023-09-30
Contact:
Ziyou Yan
摘要:
理冲汤(丸)是一种具有显著抗肿瘤功效的中医处方。本研究基于meta分析和网络药理学的方法, 对理冲汤治疗癌症的疗效评价和作用机制进行了研究。首先, 采用循证医学的研究方法, 收集尽可能多的理冲汤(丸)治疗肿瘤的临床研究报告, 然后进行荟萃分析, 以确认理冲汤(丸)治疗肿瘤的疗效和安全性; 接下来, 利用网络药理学的方法预测了理冲汤(丸)对肿瘤的干预机制。Meta分析显示, 理冲汤(丸)的总有效率和安全性显著高于对照组, 具有统计学意义(P < 0.01)。 理冲汤(丸)共筛选出化合物111个; 与癌症的交集靶点共339个; 由PPI网络图可知, 其核心靶点是: AKT1、TP53、TNF、IL6、JUN、VEGFA、MYC、ESR1、EGFR、CASP3; 进行GO分析, 富集基因数量最多的是protein binding, cytosol, nucleus, 分别分布了291, 179, 166个基因; KEGG分析共富集通路1894条。分子对接结果显示, 槲皮素、木犀草素、山奈酚能够很好地与AKT1、TNF、VEGFA、EGFR对接, 木犀草素-AKT1和槲皮素-AKT1结合程度最佳。发现, 理冲汤(丸)在癌症治疗中保持其疗效性和安全性; 理冲汤(丸)的有效中药成分可能通过上述多个靶点和通路, 发挥出多种生物活性来抑制癌症; 目前理冲汤(丸)治疗非妇科癌症的类型主要集中在肝细胞癌上。
Supporting:
张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735.
Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735.
Figure 1. The results of the meta-analysis. (A) Comparison of total effective rate between Li Chong Decoction (Bolus) group and control group; (B) Comparison of safety between Li Chong Decoction (Bolus) group and control group; (C) Funnel chart of total effective rate in literature publication bias; (D) Funnel chart of safety in literature publication bias.
Figure 8. Docking diagram of core compounds and important target molecules of Li Chong Decoction (Bolus). (A–D) Docking diagram of quercetin and AKT1, TNF, VEGFA, and EGFR targets of Li Chong Decoction (Bolus); (E–H) Docking diagram of Lluteolin and AKT1, TNF, VEGFA, and EGFR targets of Li Chong Decoction (Bolus); (I–L) Docking diagram of kaempferol and AKT1, TNF, VEGFA and EGFR targets of Li Chong Decoction (Bolus).
[1] |
Zhang, X.Y.; Qiu, H.A.; Li, C.S.; Cai, P.P.; Qi, F.H. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. BioSci. Trends. 2021, 15, 283–298.
|
[2] |
Neha, D.; Shikha, S. Cancer chemotherapy with novel bioactive natural products. J. Chin. Pharm. Sci. 2022, 31, 589.
|
[3] |
Wang, Y.F.; Zheng, Y.; Ku, B.S.; Yao, H.Y.; Yao, G.Y.; Wan, Y.L. Anti-tumor activity of Hedyotis diffusa Willd. in mice. J. Chin. Pharm. Sci. 2013, 22, 272–276.
|
[4] |
Wang, S.; Fu, J.L.; Hao, H.F.; Jiao, Y.N.; Li, P.P.; Han, S.Y. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol. Res. 2021, 170, 105728.
|
[5] |
Wang, S.M.; Long, S.Q.; Deng, Z.Y.; Wu, W.Y. Positive role of Chinese herbal medicine in cancer immune regulation. Am. J. Chin. Med. 2020, 48, 1577–1592.
|
[6] |
Xiang, Y.N.; Guo, Z.M.; Zhu, P.F.; Chen, J.; Huang, Y.Y. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019, 8, 1958–1975.
|
[7] |
Tao, W.W.; Jiang, H.; Tao, X.M.; Jiang, P.; Sha, L.Y.; Sun, X.C. Effects of acupuncture, tuina, Tai Chi, Qigong, and traditional Chinese medicine five-element music therapy on symptom management and quality of life for cancer patients: a meta-analysis. J. Pain Symptom Manag. 2016, 51, 728–747.
|
[8] |
Zhao, Y.M.; Feng, Y.W.; Zhang, L.; Yu, C.H. Research progress in the treatment of uterine leiomyoma with Lichong Decoction. Chin. J. Exp. Tradit. Med. Form. 2021, 27, 228–234.
|
[9] |
Wang, Y.S.; Li, D.H.; Xu, X.; Qian, R.Y.; Zhang, Y.L.; Huang, Y.H.; Geng, J.G.; Zou, X.L.; Han, H.J.; Zhang, W.F. Lichong Decoction reduces Matrix Metalloproteinases-2 expression but increases Tissue Inhibitors of Matrix Metalloproteinases-2 expression in a rat model of uterine leiomyoma. J. Tradit. Chin. Med. 2016, 36, 479–485.
|
[10] |
Wang, W.; Zhang, W.; Li, D.; Qian, R.; Zhu, L.; Liu, Y.; Chen, C. Lichong Decoction inhibits micro-angiogenesis by reducing the expressions of hypoxia inducible factor-1α and vascular endothelial growth factor in hysteromyoma mouse model. J. Tradit. Chin. Med. 2020, 40, 928–937.
|
[11] |
Li, D.H.; Xu, X.; Qian, R.Y.; Geng, J.G.; Zhang, Y.; Xie, X.L.; Wang, Y.S.; Zou, X.L. Effect of Lichong Decoction on expression of Bcl-2 and Bcl-2-associated X protein mRNAs in hysteromyoma model rat. J. Tradit. Chin. Med. 2013, 33, 238–242.
|
[12] |
Li, D.H.; Zhang, Y.L.; Han, H.J.; Geng, J.G.; Xie, X.L.; Zheng, J.B.; Wang, Y.S.; Zou, X.L. Effect of Lichong Decoction on expression of IGF-I and proliferating cell nuclear antigen mRNA in rat model of uterine leiomyoma. J. Tradit. Chin. Med. 2012, 32, 636–640.
|
[13] |
Zhao, S.G.; Zhang, X.F. Zhang Xiaofeng’s experience of use Li Chong Tang’s in treating colorectal cancer. Guangming Tradit. Chin. Med. 2022, 37, 2718–2721.
|
[14] |
Niu, W.H. Research on the mechanism of Jiawei Lichong Decoction in treating hepatocellular carcinoma based on bioinformatics analysis. Henan Univ. Tradit. Chin. Med. 2020.
|
[15] |
Yi, P.J.; Zhang, Z.Y.; Huang, S.Q.; Huang, J.H.; Peng, W.J.; Yang, J.J. Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer’s disease. Pharm. Biol. 2020, 58, 932–943.
|
[16] |
Foroutan, F.; Guyatt, G.; Alba, A.C.; Ross, H. Meta-analysis: mistake or milestone in medicine? Heart. 2018, 104, 1559–1561.
|
[17] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[18] |
Li, X.; Wei, S.Z.; Niu, S.Q.; Ma, X.; Li, H.T.; Jing, M.Y.; Zhao, Y.L. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022, 144, 105389.
|
[19] |
Wang, Z.Y.; Wang, X.; Zhang, D.Y.; Hu, Y.J.; Li, S. Traditional Chinese medicine network pharmacology: development in new era under guidance of network pharmacology evaluation method guidance. China J. Chin. Mater. Med. 2022, 47, 7–17.
|
[20] |
Hao, L.Y.; Yang, J.Q. Treatment of 30 cases of hysteromyoma with modified Lichong decoction. Jilin J. Tradit. Chin. Med. 2000, 06, 32.
|
[21] |
Li, D.H.; Zhang, W.F.; Liu, X.M.; Zhu, L.J.; Chen, C.; Liu, Y. Observation on the therapeutic effect of "Lizhong Decoction", a traditional Chinese medicine for strengthening the body and removing blood stasis, on hysteromyoma. Liaoning J. Tradit. Chin. Med. 2018, 45, 1653–1656.
|
[22] |
Ye, T.M. Clinical observation on the treatment of 38 cases of women with oligoabdominal syndrome with Jiawei Lichong decoction. J. Guangzhou Med. Coll. 2004, 02, 91–92.
|
[23] |
Zhong, H.L. Clinical observation on the treatment of hysteromyoma of qi deficiency and blood stasis with Lichong decoction plus acupoint application. Jiangxi Univ. Tradit. Chin. Med. 2020.
|
[24] |
Zhou, Q.; Zhou, F.; Zhang, X.H. Clinical study on the treatment of advanced ovarian cancer with Lichong decoction plus or minus TC regimen. New Chin. Med. 2020, 52, 39–43.
|
[25] |
Pei, X.; Du, Y.Q.; Liu, K.J. Clinical Study on the Treatment of Advanced Ovarian Cancer with Lichong Decoction Plus and Minus Formula Combined with Chemotherapy. Liaoning J. Tradit. Chin. Med. 2011, 38, 920–922.
|
[26] |
Shao S.Q. Analysis of the clinical efficacy of Lichong decoction plus minus formula combined with chemotherapy in the treatment of advanced ovarian cancer. Heilongjiang Tradit. Chin. Med. 2020, 49, 30–31.
|
[27] |
Davoodvandi, A.; Shabani Varkani, M.; Clark, C.C.T.; Jafarnejad, S. Quercetin as an anticancer agent: focus on esophageal cancer. J. Food Biochem. 2020, 44, e13374.
|
[28] |
Khan, K.; Javed, Z.; Sadia, H.; Sharifi-Rad, J.; Cho, W.C.; Luparello, C. Quercetin and microRNA interplay in apoptosis regulation in ovarian cancer. Curr. Pharm. Des. 2021, 27, 2328–2336.
|
[29] |
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratislava Med. J. 2017, 118, 123–128.
|
[30] |
Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021, 138, 111548.
|
[31] |
Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med. Chem. 2020, 20, 1387–1396.
|
[32] |
Wu, H.T.; Lin, J.; Liu, Y.E.; Chen, H.F.; Hsu, K.W.; Lin, S.H.; Peng, K.Y.; Lin, K.J.; Hsieh, C.C.; Chen, D.R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine. 2021, 81, 153437.
|
[33] |
Zhao, J.; Li, L.; Wang, Z.; Li, L.; He, M.; Han, S.; Dong, Y.; Liu, X.; Zhao, W.; Ke, Y.; Wang, C. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol. Res. 2021, 174, 105939.
|
[34] |
Zhang, M.; Wang, R.; Tian, J.; Song, M.Q.; Zhao, R.; Liu, K.D.; Zhu, F.; Shim, J.H.; Dong, Z.G.; Lee, M.H. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J. Cell Mol. Med. 2021, 25, 5560–5571.
|
[35] |
Pandurangan, A.K.; Esa, N.M. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac. J. Cancer Prev. 2014, 15, 5501–5508.
|
[36] |
Juszczak, A.M.; Wöelfle, U.; Končić, M.Z.; Tomczyk, M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med. Res. Rev. 2022, 42, 1423–1462.
|
[37] |
Wang, F.; Wang, L.; Qu, C.; Chen, L.; Geng, Y.; Cheng, C.; Yu, S.; Wang, D.; Yang, L.; Meng, Z.; Chen, Z. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer. 2021, 21, 396.
|
[38] |
Kim, T.W.; Lee, S.Y.; Kim, M.; Cheon, C.; Ko, S.G. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis. 2018, 9, 875.
|
[39] |
Zhang, Y.M.; Chen, J.Q.; Fang, W.X.; Liang, K.Y.; Li, X.N.; Zhang, F.; Pang, Y.Z.; Fang, G.; Wang, X.N. Kaempferol suppresses androgen-dependent and androgen-independent prostate cancer by regulating Ki67 expression. Mol. Biol. Rep. 2022, 49, 4607–4617.
|
[40] |
Herberts, C.; Murtha, A.J.; Fu, S.; Wang, G.; Schönlau, E.; Xue, H.; Lin, D.; Gleave, A.; Yip, S.; Angeles, A.; Hotte, S.; Tran, B.; North, S.; Taavitsainen, S.; Beja, K.; Vandekerkhove, G.; Ritch, E.; Warner, E.; Saad, F.; Iqbal, N.; Wyatt, A.W. Activating AKT1 and PIK3CA mutations in metastatic castration-resistant prostate cancer. Eur. Urol. 2020, 78, 834–844.
|
[41] |
Deng, T.Y.; Shen, P.; Li, A.M.; Zhang, Z.Y.; Yang, H.L.; Deng, X.J.; Peng, X.M.; Hu, Z.; Tang, Z.B.; Liu, J.H.; Hou, R.T.; Liu, Z.; Fang, W.Y. CCDC65 as a new potential tumor suppressor induced by metformin inhibits activation of AKT1 via ubiquitination of ENO1 in gastric cancer. Theranostics. 2021, 11, 8112–8128.
|
[42] |
Silwal-Pandit, L.; Langerød, A.; Børresen-Dale, A.L. TP53 Mutations in breast and ovarian cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a026252.
|
[43] |
Mu, H.Q.; He, Y.H.; Wang, S.B.; Yang, S.; Wang, Y.J.; Nan, C.J.; Bao, Y.F.; Xie, Q.P.; Chen, Y.H. miR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin. Transl. Oncol. 2020, 22, 111–121.
|
[44] |
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer. 2001, 37, 9–15.
|
[45] |
Saatci, O.; Huynh-Dam, K.T.; Sahin, O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J. Mol. Med. 2021, 99, 1691–1710.
|
[46] |
Cheng, W.L.; Feng, P.H.; Lee, K.Y.; Chen, K.Y.; Sun, W.L.; Van Hiep, N.; Luo, C.S.; Wu, S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021, 22, 12828.
|
[47] |
Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer. Front. Immunol. 2020, 11, 565470.
|
[48] |
Li, M.H.; Zhang, R.F.; Li, J.; Li, J.N. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis. Front. Immunol. 2022, 13, 894445.
|
[49] |
Wang, H.; Wu, J.; Chen, M.; Liu, S.L.; Xu, L.Z. Effect of Modified Lichong Decoction Combined with 5-fluorouracil on Epithelial Interstitial Transformation of Transplanted Tumor Cells in H22 Bearing Mice. Chin. J. Exp. Tradit. Med. Form. 2019, 25, 82–89.
|
[50] |
Wang, H.; Xu, L.Z.; Wang, J.; Sun, Q.M.; Chen, M.; Liu, S.L. Effect of Modified Lichong Tang Combined with 5-fluorouracil on Epithelial Interstitial Transformation of Human HepG2 Liver Cancer Cells. Chin. J. Exp. Tradit. Med. Form. 2019, 25, 14–21.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 杜浩鑫, 保琦, 李黄倩玉, 张逸晨, 海沙尔江·吾守尔, 史录文, 管晓东. 中国中老年癌症幸存者健康状况分析[J]. 中国药学(英文版), 2023, 32(9): 744-754. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[8] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[9] | 彭词艳, 陈景, 李斯妮, 李健和, 彭六保. 哌柏西利联用来曲唑对比多西他赛联用表柔比星一线治疗晚期乳腺癌的循证药物经济学评价[J]. 中国药学(英文版), 2023, 32(3): 214-222. |
[10] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[11] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[12] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[13] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[14] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[15] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||