中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (9): 704-719.DOI: 10.5246/jcps.2023.09.058
收稿日期:
2023-02-15
修回日期:
2023-05-15
接受日期:
2023-06-18
出版日期:
2023-09-30
发布日期:
2023-09-30
通讯作者:
方毅
作者简介:
基金资助:
Ping Shang, Lin Liu, Yi Fang*()
Received:
2023-02-15
Revised:
2023-05-15
Accepted:
2023-06-18
Online:
2023-09-30
Published:
2023-09-30
Contact:
Yi Fang
摘要:
子宫内膜异位症是妇科常见疾病, 严重影响患者的心身健康, 桂枝茯苓丸是中药复方, 对子宫内膜异位症具有积极作用, 但桂枝茯苓丸的作用机制尚不清楚。本研究旨在通过网络药理学和分子对接技术揭示桂枝茯苓丸治疗子宫内膜异位症的可能分子机制。首先, 在TCMSP平台筛选出桂枝茯苓丸活性成分, 利用GeneCards、OMIM、PharmGkb、Disgenet、drugbank、TTD数据库筛选出子宫内膜异位症Endometriosis (EMT)的相关靶点基因, 将两者通过R语言、Cytoscapes和STRING进行汇总分析, 筛选出中药靶基因与疾病相关基因并构建中药调控网络和PPI网络图, 通过R语言进行GO和KEGG富集分析。最后, 以核心基因的蛋白受体和所对应的小分子配体进行分子对接。共筛选出桂枝茯苓丸49个成分和189个(去重复后)预测靶点, EMT靶点1115个(去重复后); 通过比对桂枝茯苓丸和EMT共同靶点, 筛选出80个潜在基因。桂枝茯苓丸与疾病的交集基因的PPI网络包涵1218条边和80个节点, 其核心基因有AKT1、TP53、TNF、IL6等。分子对接结果显示桂枝茯苓丸的核心基因与成分有较好的结合能。
Supporting:
尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719.
Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719.
Figure 9. The results of the mode of action of active compounds with four target proteins using molecular docking are represented. (A) The mode of action of baicalein with the target ATK1 (PDB ID: 3CQW); (B1–B3) The mode of action of kaempferol, paeoniflorin, and quercetin with the target TNF (PDB ID: 5UUI); (C) The mode of action of paeoniflorin with target IL6 (PDB ID: 1ALU); (D1–D2) The mode of action of baicalei, and quercetin with the target TP53 (PDB ID: 501F).
[1] |
Sun, F.Q.; Duan, H. Analysis of characteristics of endometrial lesions in infertile patients with endometriosis. Chin. Fam. Planning Obstet. 2016, 8, 49–53.
|
[2] |
Giudice, L.C.; Kao, L.C. Endometriosis. Lancet. 2004, 364, 1789–1799.
|
[3] |
Han, X.; Guo, H.Y.; Kong, D.; Han, J.S.; Zhang, L.F. Analysis of characteristics and influence factors of diagnostic delay of endometriosis. Chin. J. Obstet. Gynecol. 2018, 53, 92–98.
|
[4] |
Kim, H.S.; Kim, T.H.; Chung, H.H.; Song, Y.S. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. Br. J. Cancer. 2014, 110, 1878–1890.
|
[5] |
Chen, X.P.; Xu, D.F.; Xu, W.H.; Yao, J; Fu, S.M. Glutathione-S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis in Chinese populations. Gynecol. Endocrinol. 2015, 31, 840–845.
|
[6] |
Fan, W.; Huang, Z.Y.; Xiao, Z.; Li, S.W.; Ma, Q.H. The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. J. Assist. Reprod. Genet. 2016, 33, 1373–1383.
|
[7] |
Dai, Y.; Li, X.Y.; Shi, J.H.; Leng, J.H. A review of the risk factors, genetics and treatment of endometriosis in Chinese women: a comparative update. Reprod. Health. 2018, 15, 1–12.
|
[8] |
Chen, F.; Song, C.X.; Wang, F. Effects of Guizhi Fu ling pill on extracellular regulatory protein kinase and sex hormones in patients with endometriosis. J. Practical. Clin. Med. 2017, 21, 72–75, 87.
|
[9] |
Ng, J.; Chwalisz, K.; Carter, D.C.; Klein, C.E. Dose-dependent suppression of gonadotropins and ovarian hormones by elagolix in healthy premenopausal women. J. Clin. Endocrinol. Metab. 2017, 102, 1683–1691.
|
[10] |
Zulfikaroglu, E.; Kılıc, S.; Islimye, M.; Aydin, M.; Zergeroglu, S.; Batioglu, S. Efficacy of anti-tumor necrosis factor therapy on endometriosis in an experimental rat model. Arch. Gynecol. Obstet. 2011, 283, 799–804.
|
[11] |
Wang, Y. The clinical efficacy of Huoxue Xiaozheng Decoction in the treatment of endometriosis. Inn. Mong. Tradit. Chin. Med. 2019, 38, 63–64.
|
[12] |
Hang, Y.; Li, L.H. Evaluation of the efficacy of zìnǐ qūtán huàtán xiāo zhēng prescription in the treatment of endometriosis. Beijing J. Tradit. Chin. Med. 2017, 36, 79–81.
|
[13] |
Chen, L.Q. Effects of Guizhi Fu ling pill combined with GnRH analogue on cell proliferation, invasion and MEK/ERK pathway in endometriosis lesions. J. Hainan Med. Coll. 2017, 23, 2683–2685, 2689.
|
[14] |
Cheng, Y.Z. Effect of Shaofu Zhuyu Decoction combined with Guizhi Fu ling Pill on dysmenorrhea of endometriosis and its effect on inflammatory and oxidative stress state. Mass. Rehabil. Med. 2020, 11, 42–45.
|
[15] |
Ding, N.; Wang, X.; Xia, X.J. Effects of Guizhi Fuling pill on serum IL-2, IL-8, VEGF and ovarian function in patients with endometriosis. J. Liaoning Univ. Tradit. Chin. Med. 2019, 21, 110–113.
|
[16] |
Chen, G.Y.; Huang, P.; Liao, X.H.; Xie, J.B. Bolus of cassia twig tuckahoe of therapeutic effect and mechanism of endometriosis in rats. J. Clin. Rational. Drug Use. 2021, 14, 26–28.
|
[17] |
Chen J.; Gui, Z.Z.; Yan, H.J.; Pang, Z.H.; Sun, X.Y.; Cai, X.T.; Hu, C.P.; Wang, Z.G. Effect and mechanism of Guizhi Fu ling Pill on pain relief in endometriosis rats. Shi Zhen Tradit. Chin. Med. 2020, 31, 2305–2308.
|
[18] |
Park, S.; Lim, W.; Bazer, F.W.; Whang, K.Y.; Song, G. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J. Nutr. Biochem. 2019, 63, 87–100.
|
[19] |
Ke, J.Y.; Yang, J.; Li, J.; Xu, Z.; Li, M.Q.; Zhu, Z.L. Baicalein inhibits FURIN-MT1-MMP-mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1. Am. J. Reprod. Immunol. Microbiol. 2021, 85, e13344.
|
[20] |
Mc Cormack, B.M.; Maenhoudt, N.; Fincke, V.; Stejskalová, A.; Greve, B.; Kiesel, L.; Meresman, G.; Vankelecom, H.; Götte, M.; Barañao, R. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro. Hum Reprod. 2021, 36, 1501–1519.
|
[21] |
Li, J.; Chen, Y.; Mo, Z.; Li, L. TP53 Arg72Pro polymorphism (rs1042522) and risk of endometriosis among Asian and Caucasian populations. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 189, 73–78.
|
[22] |
Krasnyi, A.M.; Sadekova, A.A.; Sefihanov, T.G.; Vtorushina, V.V.; Krechetova, E.G.; Khilkevich, E.G.; Arakelyan, A.S.; Pavlovich, S.V. The content of cytokines IL-6, IL-8, TNF-α, IL-4 and the level of expression in macrophages CD86 and CD163 in peritoneal fluid has a reverse correlation with the degree of severity of external genital endometriosis. Biomeditsinskaya Khimiya. 2019, 65, 432–436.
|
[23] |
Kokot, I.; Piwowar, A.; Jędryka, M.; Sołkiewicz, K.; Kratz, E.M. Diagnostic significance of selected serum inflammatory markers in women with advanced endometriosis. Int. J. Mol. Sci. 2021, 22, 2295.
|
[24] |
da Luz, C.M.; da Broi, M.G.; Donabela, F.C.; Paro de Paz, C.C.; Meola, J.; Navarro, P.A. PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod. BioMed. Online. 2017, 35, 379–386.
|
[25] |
London, C.A.; Sekhon, H.S.; Arora, V,; Stein, D.A.; Iversen, P.L.; Devi, G.R. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther. 2003, 10, 823–832.
|
[26] |
Weigel, M.T.; Krämer, J.; Schem, C.; Wenners, A.; Alkatout, I.; Jonat, W,; Maass, N.; Mundhenke, C. Differential expression of MMP-2, MMP-9 and PCNA in endometriosis and endometrial carcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 74–78.
|
[27] |
Machado, D.E.; Berardo, P.T.; Palmero, C.Y.; Nasciutti, L.E. Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. J. Exp. Clin. Cancer Res. 2010, 29, 4.
|
[28] |
Mu, F.; Janet, R.E.; Rimm, E.B.; Donna, S.; Missmere, S.A. Endometriosis and risk of coronary heart disease. Circ. Cardiovasc. Qual. Outcomes. 2016, 9, 257–264.
|
[29] |
Nagai, K.; Hayashi, K.; Yasui, T.; Katanoda, K.; Iso, H.; Kiyohara, Y.; Wakatsuki, A.; Kubota, T.; Mizunuma, H. Disease history and risk of comorbidity in women’s life course: a comprehensive analysis of the Japan Nurses’ Health Study baseline survey. BMJ Open. 2015, 5, e006360.
|
[30] |
Kvaskoff, M.; Mu, F.; Terry, K.L.; Harris, H.R.; Poole, E.M.; Farland, L.; Missmer, S.A. Endometriosis: a high-risk population for major chronic diseases? Hum Reprod. Update. 2015, 21, 500–516.
|
[31] |
Glavind, M.T.; Forman, A.; Arendt, L.H.; Nielsen, K.; Henriksen, T.B. Endometriosis and pregnancy complications: a Danish cohort study. Fertil. Steril. 2017, 107, 160–166.
|
[32] |
Capobianco, A. Endometriosis, a disease of the macrophage. Front. Immunol. 2013, 4, 9.
|
[33] |
Cirillo, M.; Coccia, M.E.; Petraglia, F.; Fatini, C. Role of endometriosis in defining cardiovascular risk: a gender medicine approach for women’s health. Hum. Fertil. 2022, 25, 745–753.
|
[34] |
Miller, J.E.; Ahn, S.H.; Marks, R.M.; Monsanto, S.P.; Fazleabas, A.T.; Koti, M.; Tayade, C. IL-17A modulates peritoneal macrophage recruitment and M2 polarization in endometriosis. Front. Immunol. 2020, 11, 108.
|
[35] |
Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Bednarek, I.; Kondera-Anasz, Z. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol. Lett. 2018, 201, 31–37.
|
[36] |
Zhang, Z.Z.; GUI, T.; Tang, W.W.; Zhu, L.; Wan, G.P. Effect of Guizhi Fuling pill on invasion and metastasis of ectopic lesions in endometriosis model rats. J. Tradit. Chin. Med. 2020, 35, 2397–2401.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[3] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[4] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[5] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[6] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[7] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[8] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[9] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[10] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[11] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[12] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[13] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[14] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[15] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||