中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (1): 17-31.DOI: 10.5246/jcps.2023.01.002
丁宁1, 张涛1, 罗吉2, 刘皓辰1, 邓宇1, 何永恒2,*()
收稿日期:
2022-09-02
修回日期:
2022-11-12
接受日期:
2022-11-17
出版日期:
2023-01-31
发布日期:
2023-01-31
通讯作者:
何永恒
作者简介:
基金资助:
Ning Ding1, Tao Zhang1, Ji Luo2, Haochen Liu1, Yu Deng1, Yongheng He2,*()
Received:
2022-09-02
Revised:
2022-11-12
Accepted:
2022-11-17
Online:
2023-01-31
Published:
2023-01-31
Contact:
Yongheng He
摘要:
基于网络药理学和分子对接技术, 探讨白芍七物汤(BSQWD)治疗结直肠癌(CRC)的作用机制。利用中药系统药理学数据库及分析平台(TCMSP)筛选中药的有效成分和靶标, 利用Cytoscape软件绘制综合靶标网络图。通过GeneCards、OMIM、PharmGKB、TTD和DrugBank数据库确定了潜在的CRC靶标。利用Cytoscape整合BSQWD的化学成分、靶标和疾病。通过STRING平台行蛋白-蛋白相互作用(PPI)分析。利用R行京都基因与基因组百科全书(KEGG)通路和基因本体(GO)分析, 最后利用AutoDock和SYBYL-X 2.0进行分子对接。结果表明, 7种药材中含有110种化学成分。CRC相关基因共9048个。BSQWD与184个靶基因相关。鉴定到Hub基因, 分别为JUN、HSP90AA1、TP53、AKT1、TNF等。富集了2589个GO项目, 包括2324个生物学过程、67个细胞组分、198个分子功能。KEGG分析得到179条通路。分子对接结果表明, 潜在有效成分cynaropicrin和rivularin与中心基因HSP90AA1和TP53具有良好的结合。本研究表明, BSQWD通过多成分、多靶点、多途径的协同调控实现了抗CRC的机制, 为BSQWD的应用提供了理论和科学依据。
Supporting:
丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31.
Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31.
[1] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
|
[2] |
Chen, W.Q.; Li, N.; Lan, P. Chinese Guidelines for Colorectal Cancer Screening, Early Diagnosis and Early Treatment (2020, Beijing). Chin. J. Oncol. 2021, 30, 1–28.
|
[3] |
Robertson, D.J.; Ladabaum, U. Opportunities and challenges in moving from current guidelines to personalized colorectal cancer screening. Gastroenterology. 2019, 156, 904–917.
|
[4] |
Wen, X.L.; Cheng, H.B. Discussion on treating of metastasis of colorectal cancer by pathogenesis theory of cancer toxin. China J. Tradit. Chin. Med. Pharm. 2021, 36, 6497–6499.
|
[5] |
Sun, Q.; He, M.; Zhang, M.; Zeng, S.; Chen, L.; Zhao, H.; Yang, H.; Liu, M.L.; Ren, S.; Xu, H.B. Traditional Chinese medicine and colorectal cancer: implications for drug discovery. Front. Pharmacol. 2021, 12, 685002.
|
[6] |
Lin, M.S.; Yang, S.J. Research progress on traditional Chinese medicine in the treatment of colorectal cancer. Guangming J. Chin. Med. 2020, 35, 2270–2272.
|
[7] |
Song, X.P. Clinical observation of Shaoyao Decoction combined with conventional chemotherapy in treating advanced colorectal carcinoma. China’s Naturopathy. 2020, 28, 74–76.
|
[8] |
Wang, X.Y.; Saud, S.M.; Zhang, X.W.; Li, W.D.; Hua, B.J. Protective effect of Shaoyao Decoction against colorectal cancer via the Keap1-Nrf2-ARE signaling pathway. J. Ethnopharmacol. 2019, 241, 111981.
|
[9] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[10] |
Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin. J. Integr. Med. 2020, 26, 72–80.
|
[11] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[12] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489.
|
[13] |
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019, 20, 185.
|
[14] |
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010, 2010, baq020.
|
[15] |
Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian inheritance in man (OMIM®): victor McKusick’s magnum opus. Am. J. Med. Genet. A. 2021, 185, 3259–3265.
|
[16] |
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417.
|
[17] |
Zhou, Y.; Zhang, Y.T.; Lian, X.C.; Li, F.C.; Wang, C.X.; Zhu, F.; Qiu, Y.Q.; Chen, Y.Z. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2021, 50, D1398–D1407.
|
[18] |
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.F.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2013, 42, D1091–D1097.
|
[19] |
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019, 20, 185.
|
[20] |
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612.
|
[21] |
Minoru, K.; Miho, F.; Mao, T.; Yoko, S.; Kanae, M. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361.
|
[22] |
Kim, S.; Cheng, T.J.; He, S.Q.; Thiessen, P.A.; Li, Q.L.; Gindulyte, A.; Bolton, E.E. PubChem protein, gene, pathway, and taxonomy data collections: bridging biology and chemistry through target-centric views of PubChem data. J. Mol. Biol. 2022, 434, 167514.
|
[23] |
Burley, S.K.; Bhikadiya, C.; Bi, C.X.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.K.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.H.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.H.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020, 49, D437–D451.
|
[24] |
Pan, Z.H. Research progress of traditional Chinese medicine in treating colorectal cancer in recent ten years. Acta Chin. Med. Pharmacol. 1996, 24, 16–17.
|
[25] |
Zhao, M.M.; Gao, M.; Tian, Y.L.; Du, Y.F.; Wang, C.Y.; Xu, H.J.; Zhang, L.T.; Wang, Q. Pharmacokinetic and tissue distribution studies of paeoniflorin and albiflorin in rats after oral administration of total glycosides of paeony by HPLC-MS/MS. J. Chin. Pharm. Sci. 2014, 23, 403–411.
|
[26] |
Luo, X.P.; Yu, Z.L.; Yue, B.; Ren, J.Y.; Zhang, J.; Mani, S.; Wang, Z.T.; Dou, W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. Pharm. Biol. 2020, 58, 886–897.
|
[27] |
Wang, H.Y.; Yu, H.Z.; Zheng, Y.L.. Research progress of anti-tumor effect of berberine. Chin. Tradit. Pat. Med. 2015, 37, 1791–1795.
|
[28] |
Lu, X.H.; Zhang, J.J.; Liang, H.; Zhao, Y.Y. Chemical constituents of angelica sinensis. J. Chin. Pharm. Sci. 2004, 13, 1–3.
|
[29] |
Jiao, Y.H.; Sun, S.H.; Xin, M.; Xu, J.J.; Jiang, J.J.; Jia, X.Q. New progress in the anti-tumor action of Scutellaria baicalensis Georgi and its active ingredients. Glob. Tradit. Chin. Med. 2021, 14, 1159–1165.
|
[30] |
Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: a comprehensive research review and therapeutic potential As an anti-hepatitis C virus agent. Front. Pharmacol. 2016, 7, 472.
|
[31] |
Liu, T.Y. Cynaropicrin targeting thioredoxin reductase as a promising anti-cancer agent. LanZhou University. 2019.
|
[32] |
Zheng, D.D.; Zhu, Y.; Shen, Y.L.; Xiao, S.S.; Yang, L.H.; Xiang, Y.Q.; Dai, X.X.; Hu, W.L.; Zhou, B.; Liu, Z.G.; Zhao, H.Y.; Zhao, C.G.; Huang, X.Y.; Wang, L.X. Cynaropicrin shows antitumor progression potential in colorectal cancer through mediation of the LIFR/STATs axis. Front. Cell Dev. Biol. 2021, 8, 605184.
|
[33] |
Ponte, L.; Pavan, I.; Mancini, M.; Silva, L.; Morelli, A.; Severino, M.; Bezerra, R.; Simabuco, F. The hallmarks of flavonoids in cancer. Molecules. 2021, 26, 2029.
|
[34] |
Cui, M.Y.; Lu, A.R.; Li, J.X.; Liu, J.; Fang, Y.M.; Pei, T.L.; Zhong, X.; Wei, Y.K.; Kong, Y.; Qiu, W.Q.; Hu, Y.H.; Yang, J.; Chen, X.Y.; Martin, C.; Zhao, Q. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4´-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnol. J. 2021, 20, 129–142.
|
[35] |
Liu, L.; Wu, S.H.; Li, Y.Y.; Xu, X.Y.; He, S.; Wen, F.F.; Guo, N.J.; Jia, Z.Z. Correlation of HSF1, c-Jun and DPD expression in colorectal adenocarcinoma and their clinical significance. Chin. J. Clin. Exp. Pathol. 2020, 36, 1261–1268.
|
[36] |
Zuehlke, A.D.; Beebe, K.; Neckers, L.; Prince, T. Regulation and function of the human HSP90AA1 gene. Gene. 2015, 570, 8–16.
|
[37] |
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 2019, 9, 60.
|
[38] |
Chen, E.F.; Yang, F.F.; He, H.J.; Li, Q.Q.; Zhang, W.; Xing, J.L.; Zhu, Z.Q.; Jiang, J.J.; Wang, H.; Zhao, X.J.; Liu, R.T.; Lei, L.; Dong, J.; Pei, Y.C.; Yang, Y.; Pan, J.Q.; Zhang, P.; Liu, S.Z.; Du, L.; Zeng, Y.; Yang, J. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol. Cancer. 2018, 17, 176.
|
[39] |
Zhao, X.J.; Liu, J.Z.; Liu, S.Z.; Yang, F.F.; Chen, E.F. Construction and validation of an immune-related prognostic model based on TP53 status in colorectal cancer. Cancers. 2019, 11, 1722.
|
[40] |
Xu, X.; Yao, D.Y. Expression and clinical significance of Girdin and Akt1 in colorectal carcinoma. Hebei Med. J. 2016, 38, 2259–2261, 2266.
|
[41] |
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: communication modules in the immune system and beyond. Physiol. Rev. 2019, 99, 115–160.
|
[42] |
Xu, H.; Liu, T.; Li, J.; Chen, F.; Xu, J.; Hu, L.; Jiang, L.; Xiang, Z.; Wang, X.; Sheng, J. Roburic acid targets TNF to inhibit the NF-κB signaling pathway and suppress human colorectal cancer cell growth. Front. Immunol. 2022, 13, 853165.
|
[43] |
Yang, X.L.; Sun, X.M.; Zhao, X.H.; Yang, L.J.; Shen, W.G.; Xiao, Z.S.; Guo, C.; Liu, Y.B. Expressions of IL-17E, IL-17F and their receptors in colorectal carcinoma tissue and their significances. J. Jilin Univ. Med. Ed. 2018, 44, 574–578, 696.
|
[44] |
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007.
|
[45] |
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005, 6, 322–327.
|
[46] |
Yang, Y.; Xia, D.Q.; Wang, W. Effects of inhibitor PD98059 blocking MAPK/ERK pathway on inhibiting proliferation and promoting apoptosis of colorectal cancer cells. J. Colorectal. Anal. Surg. 2019, 25, 657–667.
|
[47] |
Moradi-Marjaneh, R.; Hassanian, S.M.; Fiuji, H.; Soleimanpour, S.; Ferns, G.; Avan, A.; Khazaei, M. Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer. J. Cell Physiol. 2018, 233, 5613–5622.
|
[48] |
Ren, Y.M.; Fang, J.Y. Toll-likereceptorfamily-relatedsignalingpathwayanditsrelationship with colorectal cancer. Tumor. 2019, 39, 589–594.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[8] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[9] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[10] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[11] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[12] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[13] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[14] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[15] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||