中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (7): 517-529.DOI: 10.5246/jcps.2022.07.045
伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅*()
收稿日期:
2022-03-12
修回日期:
2022-04-05
接受日期:
2022-05-11
出版日期:
2022-07-31
发布日期:
2022-07-31
通讯作者:
王梅
作者简介:
基金资助:
Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang*()
Received:
2022-03-12
Revised:
2022-04-05
Accepted:
2022-05-11
Online:
2022-07-31
Published:
2022-07-31
Contact:
Mei Wang
摘要:
骆驼蓬(Peganum harmala L.)是一种药用植物, 其种子在中国西北地区长期被用于治疗胃肠道癌症和疟疾。本研究拟采用网络药理学和分子对接的方法, 探讨骆驼蓬种子(Peganum harmala L. seeds, PHS)对肝癌(hepatocellular carcinoma, HCC)的潜在分子靶点和药理机制。首先, 从TCMID和BATMAN-TCM数据库中获取PHS的化学成分, 并通过SwissADME数据库筛选有效成分。此外, 从PharmMapper和SwissTargetPrediction数据库中获取有效成分的靶点信息。其次, 从Liverome、DisGeNET和GeneCards等数据库中获取HCC相关靶点, 并与PHS取交集。使用Cytoscape软件绘制"化合物-靶点"网络图, 并用它们的共有靶点绘制PPI网络图, 采用DAVID数据库进行GO分析和KEGG富集分析。最后, 利用AutoDockTools进行蛋白受体与活性成分的分子对接验证。结果显示, PHS与HCC有105个共有靶点, 其中的10个核心靶点分别是ALB、AKT1、EGFR、CASP3、SRC、ESR1、MAPK3、MMP9、ANXA5和MAPK1。此外, 获得404个GO功能注释, 包括287个生物过程(biological processes, BP), 37个细胞组成(cell compositions, CC), 80个分子功能(molecular functions, MF), 还获得化学致癌基因受体、PI3K-Akt通路、HCC和乙型肝炎等110个信号分子和通路。分子对接结果表明, 10个核心靶点和12个活性组分的结合能均小于–5 kcal/mol。综上所述, 本研究阐述了PHS治疗HCC的"成分-靶点-通路"相互作用机制, 也为其临床应用提供了科学依据。
Supporting:
伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529.
Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529.
Figure 3. Component-targets network map of PHS for the treatment of HCC. Note: The more edges, the more HCC targets interact with the active ingredients.
Figure 6. GO function annotation analysis. Note: The X-axis in the figure represents the count of genes, the Y-axis represents the function, and the color represents the size of the P-value.
Figure 7. KEGG pathway enrichment analysis. Note: The X-axis in the figure represents the ratio of genes, the Y-axis represents the signaling pathway, the bubble area represents the number of pathway-enriched genes, and the color represents the size of the P-value.
Figure 9. Molecular docking visualization. (A, E) Harmaline can form hydrogen bonds with Leu-156 residue on AKT1 and Tyr-138 on ALB; (B, F) harmolol can form hydrogen bonds with Ala-230 residue on AKT1 and Tyr-138 residue on ALB; (C, G) harmine can form hydrogen bonds with Ala-230 residue on AKT1 and Tyr-138 residue on ALB; (D, H) harmol can form hydrogen bonds with Glu-191 and THR-195 residues on AKT1 and Tyr-138 residues on ALB.
[1] |
Llovet, J.M.; de Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313.
|
[2] |
Yang, J.D.; Heimbach, J.K. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ Clin. Res. Ed. 2020, 371, m3544.
|
[3] |
Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol. 2020, 72, 215–229.
|
[4] |
Nagakubo, T.; Kumano, T.; Ohta, T.; Hashimoto, Y.; Kobayashi, M. Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat. Commun. 2019, 10, 413.
|
[5] |
Geng, X.R.; Ren, Y.C.; Wang, F.F.; Tian, D.M.; Yao, X.S.; Zhang, Y.W.; Tang, J.S. Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem. Biophys. Res. Commun. 2018, 498, 99–104.
|
[6] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[7] |
Liu, Z.Y.; Guo, F.F.; Wang, Y.; Li, C.; Zhang, X.L.; Li, H.L.; Diao, L.H.; Gu, J.Y.; Wang, W.; Li, D.; He, F.C. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci. Rep. 2016, 6, 21146.
|
[8] |
Xue, R.C.; Fang, Z.; Zhang, M.X.; Yi, Z.H.; Wen, C.P.; Shi, T.L. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2012, 41, D1089–D1095.
|
[9] |
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
|
[10] |
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364.
|
[11] |
Liu, X.F.; Ouyang, S.S.; Yu, B.; Liu, Y.B.; Huang, K.; Gong, J.Y.; Zheng, S.Y.; Li, Z.H.; Li, H.L.; Jiang, H.L. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614.
|
[12] |
Lee, L.; Wang, K.; Li, G.; Xie, Z.; Wang, Y.L.; Xu, J.C.; Sun, S.X.; Pocalyko, D.; Bhak, J.; Kim, C.; Lee, K.H.; Jang, Y.J.; Yeom, Y.I.; Yoo, H.S.; Hwang, S. Liverome: a curated database of liver cancer-related gene signatures with self-contained context information. BMC Genom. 2011, 12, S3.
|
[13] |
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016, 45, D833–D839.
|
[14] |
Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinform. Oxf. Engl. 1998, 14, 656–664.
|
[15] |
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010, 39, D561–D568.
|
[16] |
Dennis, G. Jr, Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, P3.
|
[17] |
Schiffrin, B.; Radford, S.E.; Brockwell, D.J.; Calabrese, A.N. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 2020, 29, 1851–1857.
|
[18] |
Sussman, J.L.; Abola, E.E.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J. The protein data bank. Bridging the gap between the sequence and 3D structure world. Genetica. 1999, 106, 149–158.
|
[19] |
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011, 25, 13–19.
|
[20] |
Yip, T.C.F.; Lee, H.W.; Chan, W.K.; Wong, G.L.H.; Wong, V.W.S. Asian perspective on NAFLD-associated HCC. J. Hepatol. 2022, 76, 726–734.
|
[21] |
Ioannou, G.N. Epidemiology and risk-stratification of NAFLD-associated HCC. J. Hepatol. 2021, 75, 1476–1484.
|
[22] |
Baglieri, J.; Brenner, D.; Kisseleva, T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int. J. Mol. Sci. 2019, 20, 1723.
|
[23] |
Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat. Immunol. 2018, 19, 222–232.
|
[24] |
Wang, K.L.; Chen, Q.; Shao, Y.Y.; Yin, S.S.; Liu, C.Y.; Liu, Y.M.; Wang, R.; Wang, T.; Qiu, Y.L.; Yu, H.Y. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother. 2021, 133, 111044.
|
[25] |
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11.
|
[26] |
Zhou, G.L.; Li, Y.; Li, S.C.; Liu, H.X.; Xu, F.; Lai, X.H.; Zhang, Q.; Xu, J.X.; Wan, S.G. Circulating cell-free mtDNA content as a non-invasive prognostic biomarker in HCC patients receiving TACE and traditional Chinese medicine. Front. Genet. 2021, 12, 719451.
|
[27] |
Yao, H.L.; Zhao, J.L.; Wang, Z.; Lv, J.W.; Du, G.J.; Jin, Y.G.; Zhang, Y.; Song, S.Y.; Han, G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf. B Biointerfaces. 2020, 196, 111285.
|
[28] |
Herraiz, T.; Guillén, H.; Arán, V.J.; Salgado, A. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food Chem. Toxicol. 2017, 103, 261–269.
|
[29] |
Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. Β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. 2010, 48, 839–845.
|
[30] |
Yang, A.L.; Wu, Q.; Hu, Z.D.; Wang, S.P.; Tao, Y.F.; Wang, A.M.; Sun, Y.X.; Li, X.L.; Dai, L.; Zhang, J.Y. A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol. Appl. Pharmacol. 2021, 431, 115739.
|
[31] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[32] |
Sun, C.; Hu, A.N.; Wang, S.X.; Tian, B.; Jiang, L.B.; Liang, Y.; Wang, H.L.; Dong, J. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int. J. Oncol. 2020, 57, 249–263.
|
[33] |
Li, C.; Zhu, Y.; Sun, X.M.; Xu, J.J.; Xiong, D.; Wang, J.; Gao, X.Y.; Chen, X.L. The multiple mechanisms of tripterygium wilfordii-induced acute kidney injury based on network pharmacology and molecular docking. J. Chin. Pharm. Sci. 2021, 30, 556–569.
|
[34] |
Xu, Z.; Xu, M.; Liu, P.; Zhang, S.; Shang, R.Z.; Qiao, Y.; Che, L.; Ribback, S.; Cigliano, A.; Evert, K.; Pascale, R.M.; Dombrowski, F.; Evert, M.; Chen, X.; Calvisi, D.F.; Chen, X. The mTORC2-Akt1 cascade is crucial for c-myc to promote hepatocarcinogenesis in mice and humans. Hepatology. 2019, 70, 1600–1613.
|
[35] |
Spangle, J.M.; Roberts, T.M.; Zhao, J.J. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2017, 1868, 123–131.
|
[36] |
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin. Cancer Biol. 2019, 59, 125–132.
|
[37] |
Mathien, S.; Tesnière, C.; Meloche, S. Regulation of mitogen-activated protein kinase signaling pathways by the ubiquitin-proteasome system and its pharmacological potential. Pharmacol. Rev. 2021, 73, 263–296.
|
[38] |
Sui, X.B.; Kong, N.; Ye, L.; Han, W.D.; Zhou, J.C.; Zhang, Q.; He, C.; Pan, H.M. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014, 344, 174–179.
|
[39] |
Zhang, H.; Diab, A.; Fan, H.T.; Mani, S.K.K.; Hullinger, R.; Merle, P.; Andrisani, O. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during hepatitis B virus-induced liver carcinogenesis. Cancer Res. 2015, 75, 2363–2374.
|
[40] |
Brummer, C.; Faerber, S.; Bruss, C.; Blank, C.; Lacroix, R.; Haferkamp, S.; Herr, W.; Kreutz, M.; Renner, K. Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma. Cancer Lett. 2019, 442, 453–463.
|
[41] |
Yang, J.D.; Ahmed, F.; Mara, K.C.; Addissie, B.D.; Allen, A.M.; Gores, G.J.; Roberts, L.R. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology. 2020, 71, 907–916.
|
[42] |
Huang, J.H.; Chen, F.Y.; Zhong, Z.F.; Tan, H.Y.; Wang, N.; Liu, Y.T.; Fang, X.Y.; Yang, T.; Feng, Y.B. Interpreting the pharmacological mechanisms of huachansu capsules on hepatocellular carcinoma through combining network pharmacology and experimental evaluation. Front. Pharmacol. 2020, 11, 414.
|
[43] |
Sun, J.S.; Jiang, W.T.; Tian, D.Z.; Guo, Q.J.; Shen, Z.Y. Icotinib inhibits the proliferation of hepatocellular carcinoma cells in vitro and in vivo dependently on EGFR activation and PDL1 expression. Oncotargets Ther. 2018, 11, 8227–8237.
|
[44] |
D’Amelio, M.; Cavallucci, V.; Cecconi, F. Neuronal caspase-3 signaling: not only cell death. Cell Death Differ. 2010, 17, 1104–1114.
|
[45] |
Fekry, B.; Ribas-Latre, A.; Baumgartner, C.; Deans, J.R.; Kwok, C.; Patel, P.; Fu, L.; Berdeaux, R.; Sun, K.; Kolonin, M.G.; Wang, S.H.; Yoo, S.H.; Sladek, F.M.; Eckel-Mahan, K. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat. Commun. 2018, 9, 4349.
|
[46] |
Zheng, X.; Chen, J.Y.; Yang, P.H.; Yang, J.; Wen, Z.J.; Zhang, B.H. GIT1 is a novel prognostic biomarker and facilitates tumor progression via activating ERK/MMP9 signaling in hepatocellular carcinoma. Oncotargets Ther. 2015, 3731.
|
[47] |
Kang, T.H.; Park, J.H.; Yang, A.; Park, H.J.; Lee, S.E.; Kim, Y.S.; Jang, G.Y.; Farmer, E.; Lam, B.; Park, Y.M.; Hung, C.F. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. 2020, 11, 1137.
|
[48] |
Xu, F.; Guo, M.M.; Huang, W.; Feng, L.L.; Zhu, J.Z.; Luo, K.K.; Gao, J.; Zheng, B.F.; Kong, L.D.; Pang, T.; Wu, X.D.; Xu, Q. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol. 2020, 36, 101634.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[8] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[9] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[10] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[11] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[12] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[13] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[14] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[15] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||