[1] |
Sabanayagam, C.; Banu, R.; Chee, M.L.; Lee, R.; Wang, Y.X.; Tan, G.; Jonas, J.B.; Lamoureux, E.L.; Cheng, C.Y.; Klein, B.E.K.; Mitchell, P.; Klein, R.; Cheung, C.M.G.; Wong, T.Y. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol. 2019, 7, 140–149.
|
[2] |
Wan, W.C.; Long, Y. Current research on the epidemiology, etiology and pathogenesis of diabetic retinopathy. New Adv. Ophthalmol. 2022, 42, 673–679.
|
[3] |
Jiao, J.J.; Chang, K.; Yao, W.Y.; Zhang, Q.H.; Li, X.P. Exploring the mechanism of action of resveratrol in the treatment of diabetic retinopathy based on network pharmacology and experimental validation. Modern Drugs Clin. 2022, 37, 942–951.
|
[4] |
Li, D.Y. Discourse on the identification and confusion of internal and external injuries. Beijing: China Medical Science and Technology Press. 2016, 40.
|
[5] |
Sun, X.H.; Qian, K.W.; Zhou, Y.; Gu, H.Y. Study on the efficacy and mechanism of Angelica Sinensis Blood Tonic Tang Plus for diabetic retinopathy. J. Modern Int. Chin. Western Med. 2019, 28, 3152–3155, 3170.
|
[6] |
Tang, Z.Z. Study on the mechanism of protection of BRB in diabetic rats by angelica blood tonic soup through Müller cell pathway. Shanxi Univ. Tradit. Chin. Med. 2021.
|
[7] |
Yang, F.X.; Wang, Y.; Xia, P.F.; Yang, R.J.; Wang, Y.X.; Zhang, J.; Fan, Q.; Zhao, L. Research progress on chemical composition, pharmacological effects, clinical application and predictive analysis of quality markers of angelica blood tonic soup. Chin. J. Tradit. Chin. Med. 2021, 46, 2677–2685.
|
[8] |
Zhang, Y.X. Clinical study on the treatment of non-proliferative diabetic retinopathy with the addition formula of Danggui Buxue decoction. Fujian Univ. Tradi. Chin. Med. 2015.
|
[9] |
Deng, C.; Li, J.; Tang, X.Z. Effect of addition and subtraction of Danggui Buxue decoction on the efficacy of diabetic retinopathy and the effect of serum ICAM-1 and ET-1 levels. Chin. Med. Inform. 2018, 35, 90–93.
|
[10] |
Chai, G.R.; Liu, S.; Yang, H.W.; Chen, X.L. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression. Neural Regen. Res. 2021, 16, 1344–1350.
|
[11] |
Lupo, G.; Cambria, M.T.; Olivieri, M.; Rocco, C.; Caporarello, N.; Longo, A.; Zanghì, G.; Salmeri, M.; Foti, M.C.; Anfuso, C.D. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells. J. Cell Mol. Med. 2019, 23, 6565–6577.
|
[12] |
Pratiwi, R.; Nantasenamat, C.; Ruankham, W.; Suwanjang, W.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family. Front. Nutr. 2021, 8, 648995.
|
[13] |
Wang, J.; Gong, H.M.; Zou, H.H.; Liang, L.; Wu, X.Y. Isorhamnetin prevents H2O2‑induced oxidative stress in human retinal pigment epithelial cells. Mol. Med. Rep. 2018, 17, 648–652.
|
[14] |
Hu, N.N.; Zhang, X.J. Progress of research on chemical composition and pharmacological effects of Astragalus membranaceus. Chin. Med. Inform. 2021, 38, 76–82.
|
[15] |
Zhang, C.C.; Yin, Y.; Nie, S.Q.; Zheng, Y.J. The effect of inflammation on neurodegenerative changes in diabetic retinopathy. J. Clin. Ophthalmol. 2019, 27, 378–382.
|
[16] |
Yan, P.; Zhang, X.H.; Zhang, L.; Li, J. Study on the relationship between HMW-ADP, TNF-α, VEGF and diabetic retinopathy. Chin. Med. Herald. 2019, 16, 106–109.
|
[17] |
Koleva-Georgieva, D.N.; Sivkova, N.P.; Terzieva, D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy. Folia Med. 2011, 53, 44–50.
|
[18] |
Le, Y.Z. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vis. Res. 2017, 139, 108–114.
|
[19] |
Wang, Y.R.; Tang, Z.Z.; Li, Y.; Wu, D.Y.; Li, Q.Q.; Chai, J.M. Balancing relationships in diabetic retinopathy based on the theory of yin and yang. Lishizhen Med. Materia Medica Res. 2021, 32, 1704–1706.
|
[20] |
Nian, S.; Lo, A.C.Y.; Mi, Y.; Ren, K.; Yang, D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis. Lond. Engl. 2021, 8, 15.
|
[21] |
Elsherbiny, N.M.; Abdel-Mottaleb, Y.; Elkazaz, A.Y.; Atef, H.; Lashine, R.M.; Youssef, A.M.; Ezzat, W.; El-Ghaiesh, S.H.; Elshaer, R.E.; El-Shafey, M.; Zaitone, S.A. Carbamazepine alleviates retinal and optic nerve neural degeneration in diabetic mice via nerve growth factor-induced PI3K/Akt/mTOR activation. Front. Neurosci. 2019, 13, 1089.
|
[22] |
Mei, Z.H.; Yang, J.; Wang, W.; Cao, P.; Yang, Y.; Li, P.F.; Zhu, K.F.; Jiang, T.; Zhang, M.T. Exploring the effect of choroidalin injection on early diabetic retinopathy based on PI3K/Akt pathway. J. Chin. Med. Eye Ear Nose Throat. 2020, 10, 6–10.
|