中国药学(英文版) ›› 2020, Vol. 29 ›› Issue (12): 868-879.DOI: 10.5246/jcps.2020.12.077
收稿日期:
2020-08-26
修回日期:
2020-10-10
接受日期:
2020-11-06
出版日期:
2020-12-30
发布日期:
2020-12-30
通讯作者:
张友波, 杨秀伟
作者简介:
基金资助:
Shi Wang, Lu Liu, Youbo Zhang*(), Wei Xu, Xiuwei Yang*()
Received:
2020-08-26
Revised:
2020-10-10
Accepted:
2020-11-06
Online:
2020-12-30
Published:
2020-12-30
Contact:
Youbo Zhang, Xiuwei Yang
About author:
Dr. Youbo Zhang received his Ph.D. and was a staff fellow of Peking University at the year 2010. He went Natural Institutes of Health to complete his postdoctoral training in Dr. Frank J. Gonzalez’s laboratory during the year 2015-2016. Dr. Zhang’s research interests include chemistry of natural products, drug metabolism, drug-induced liver injury, and toxicometabolomics. He has published more than 40 papers on Free Radical and Biology and Medicine, Drug Metabolism and Disposition, and some other journals by now. |
Dr. Xiuwei Yang got his doctorate in Toyama Medical and Pharmaceutical University of Japan in 1992. He worked as a postdoctoral research fellow at School of Pharmaceutical Sciences from Beijing Medical University in 1992–1994. In 1994.9, he joined Peking University School of Pharmaceutical Sciences and worked as a professor. His major research interests are the absorption, distribution, metabolism, excretion, toxicity and activity of drugs (ADMET/Act.), complex system exploration of traditional Chinese Medicine, biological transformation of natural drug and/or Chinese medicinal chemical compositions, innovative drug discovery and natural medicinal chemistry. His group has established human intestinal bacteria biological transformation system, human Caco-2 cell monolayer absorption model, modified rat everted intestinal sac model, blood brain barrier absorption cell model, liver microsomal transformation and metabolism, and tissue distribution of drugs. He has published more than 450 papers in journals, and edited more than 20 works. He serves as the editorial board member of Journal of Asian Natural Products Research, Journal of Chinese Pharmaceutical Sciences, China Journal of Chinese Medica and Chinese Journal of Pharmaceutical Analysis , etc. |
摘要:
生物碱是吴茱萸中一类主要活性成分, 具有抗肿瘤、抗炎、镇痛和抗菌作用。本文报道吴茱萸中六个主要成分吴茱萸碱、吴茱萸次碱、去氢吴茱萸碱、吴茱萸卡品碱、二氢吴茱萸卡品碱和1-甲基-2-十一烷基-4-(1 H)-喹诺酮潜在的抗炎作用。在人结肠腺癌细胞和RAW264.7巨噬细胞共培养体系中, 当以2 μg/mL脂多糖诱导RAW264.7巨噬细胞产生炎症反应时, 吴茱萸碱、吴茱萸次碱和去氢吴茱萸碱明显下调促炎性细胞因子(Il-6, Il-1β和Tnf-α)和炎性介质, 诸如环氧化酶-2(Cox-2)和诱导型一氧化氮合酶(iNos)的mRNA表达; 与模型组比较, 给药组跨上皮电阻增高, 紧密连接渗透率降低。总之, 受试化合物具有抗炎活性, 此结果为进一步研究吴茱萸的抗炎机制奠定了基础。
Supporting:
王石, 刘璐, 张友波, 徐嵬, 杨秀伟. 吴茱萸主要成分在人结肠腺癌细胞和RAW264.7巨噬细胞共培养模型中的肠道抗炎作用[J]. 中国药学(英文版), 2020, 29(12): 868-879.
Shi Wang, Lu Liu, Youbo Zhang, Wei Xu, Xiuwei Yang. Intestinal anti-inflammatory effects of main components of the fruits of Euodia rutaecarpa in a co-culture model of the human colorectal adenocarcinoma cells and RAW264.7 macrophages[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(12): 868-879.
Figure 1. Chemical structures of evodiamine (1), rutaecarpine (2), dehydroevodiamine (3), evocarpine (4), dihydroevocarpine (5), and 1-methyl-2-undecyl-4-(1H)-quinolone (6).
Figure 2. A co-culture system was constructed with Caco-2 cells and RAW264.7 cells. LPS was added to the basolateral compartment of this co-culture system to induce inflammation.
Figure 4. Time course of the compounds to TEER value. (A) Effects of EDM, RCP and DEDM to the TEER value; (B) Effects of ECP, DECP and MUQ to the TEER value.
Figure 5. The effects of EDM, RCP, DEDM, ECP, DECP, MUQ and CCM on the expressions of iNos and Cox-2 at the mRNA level. (A) Effects of EDM, RCP, DEDM, ECP, DECP, MUQ and CCM on the expressions of Cox-2 at the mRNA level; (B) Effects of EDM, RCP, DEDM, ECP, DECP, MUQ and CCM on the expressions of iNos at the mRNA level. *P < 0.05 vs. LPS, **P < 0.01 vs. LPS, ***P < 0.001 vs. LPS, #P < 0.1 vs. LPS, ##P < 0.01 vs. LPS, ###P < 0.001 vs. LPS.
Figure 6. The effects of EDM, RCP, DEDM and CCM on the expressions of Il-6, Tnf-α and Il-1β at the mRNA and protein levels. (A) (C) (E) Protein levels of Il-6, Tnf-α and Il-1β after treatment with LPS and EDM, RCP, DEDM and CCM; (B) (D) (F) mRNA expression levels of Il-6, Tnf-α and Il-1β after treatment with LPS and EDM, RCP, DEDM and CCM; *P < 0.05 vs. LPS, **P < 0.01 vs. LPS, ***P < 0.001 vs. LPS, #P < 0.1 vs. LPS, ##P < 0.01 vs. LPS, ###P < 0.001 vs. LPS.
Figure 7. The effects of ECP, DECP, MUQ and CCM on the mRNA expression and protein levels of cytokines. (A) (C) (E) Protein levels of Il-6, Tnf-α and Il-1β after treatment with LPS and ECP, DECP, MUQ and CCM; (B) (D) (F) mRNA expression levels of Il-6, Tnf-α and Il-1β after treatment with LPS and ECP, DECP, MUQ and CCM; *P < 0.05 vs. LPS, **P < 0.01 vs. LPS, ***P < 0.001 vs. LPS, #P < 0.1 vs. LPS, ##P < 0.01 vs. LPS, ###P < 0.001 vs. LPS.
[1] |
Huttenhower, C.; Kostic, A.D.; Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome. Immunity. 2014, 40, 843–854.
|
[2] |
Amarapurkar, A.D.; Amarapurkar, D.N.; Rathi, P.; Sawant, P.; Patel, N.; Kamani, P.; Rawal, K.; Baijal, R.; Sonawane, A.; Narawane, N.; Kolekar, S.; Totla, N. Risk factors for inflammatory bowel disease: a prospective multi-center study. Indian J. Gastroenterol. 2018, 37, 189–195.
|
[3] |
Park, S.J.; Kim, W.H.; Cheon, J.H. Clinical characteristics and treatment of inflammatory bowel disease: a comparison of Eastern and Western perspectives. World J. Gastroenterol. 2014, 20, 11525–11537.
|
[4] |
Ng, S.C. Emerging leadership lecture: Inflammatory bowel disease in Asia: Emergence of a "Western" disease. J. Gastroenterol. Hepatol. 2015, 30, 440–445.
|
[5] |
Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.; Leung, V.K.; Tsang, S.W.; Yu, H.H.; Li, M.F.; Ng, K.K.; Kamm, M.A.; Studd, C.; Bell, S.; Leong, R.; de Silva, H.J.; Kasturiratne, A.; Mufeena, M.N.F.; Ling, K.L.; Ooi, C.J.; Tan, P.S.; Ong, D.; Goh, K.L.; Hilmi, I.; Pisespongsa, P.; Manatsathit, S.; Rerknimitr, R.; Aniwan, S.; Wang, Y.F.; Ouyang, Q.; Zeng, Z.R.; Zhu, Z.H.; Chen, M.H.; Hu, P.J.; Wu, K.C.; Wang, X.; Simadibrata, M.; Abdullah, M.; Wu, J.C.; Sung, J.J.Y.; Chan, F.K.L. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn's and colitis epidemiology study. Gastroenterology. 2013, 145, 158–165.e2.
|
[6] |
Kaplan, G.G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727.
|
[7] |
Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342.
|
[8] |
Pellino, G.; Keller, D.S.; Sampietro, G.M.; Annese, V.; Carvello, M.; Celentano, V.; Coco, C.; Colombo, F.; Cracco, N.; di Candido, F.; Franceschi, M.; Laureti, S.; Mattioli, G.; Pio, L.; Sciaudone, G.; Sica, G.; Villanacci, V.; Zinicola, R.; Leone, S.; Danese, S.; Spinelli, A.; Delaini, G.; Selvaggi, F. Inflammatory bowel disease (IBD) position statement of the Italian Society of Colorectal Surgery (SICCR): general principles of IBD management. Tech. Coloproctology. 2020, 24, 105–126.
|
[9] |
Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet. 2017, 389, 1756–1770.
|
[10] |
Jiang, J.L.; Hu, C.P. Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules. 2009, 14, 1852–1859.
|
[11] |
Hu, C.Q.; Yang, X.B.; Yang, X.W.; Liu, J.X. Flavonoid glycosides from dried and nearly ripe fruits of Evodia rutaecarpa. China J. Chin. Mater. Med. 2012, 37, 2571–2575.
|
[12] |
Yang, X.W.; Zhang, H.; Hu, J. Chemical constituents of near ripe fruits of Evodia rutaecarpa var. bodinieri. J. Trop. Subtrop. Bot. 2008, 16, 244–248.
|
[13] |
Li, M.L.; Wang, C.H. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruticarpum: a review. J. Ethnopharmacol. 2020, 263, 113231.
|
[14] |
Park, S.Y.; Park, C.; Park, S.H.; Hong, S.H.; Kim, G.Y.; Hong, S.H.; Choi, Y.H. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human cervical cancer cells via activation of AMP-activated protein kinase. Biosci. Trends. 2016, 10, 467–476.
|
[15] |
Yang, F.; Shi, L.; Liang, T.; Ji, L.L.; Zhang, G.J.; Shen, Y.; Zhu, F.F.; Xu, L. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2017, 485, 54–61.
|
[16] |
Zhu, B.Q.; Zhao, L.; Liu, Y.; Jin, Y.; Feng, J.; Zhao, F.Y.; Sun, J.Y.; Geng, R.; Wei, Y.W. Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. Int. J. Biochem. Cell Biol. 2019, 108, 98–110.
|
[17] |
Adams, M.; Wube, A.; Bucar, F.; Bauer, R.; Kunert, O.; Haslinger, E. Quinolone alkaloids from Evodia rutaecarpa: a potent new group of antimycobacterial compounds. Int. J. Antimicrob. Agents. 2005, 26, 262–264.
|
[18] |
Rajca, S.; Grondin, V.; Louis, E.; Vernier-Massouille, G.; Grimaud, J.C.; Bouhnik, Y.; Laharie, D.; Dupas, J.L.; Pillant, H.; Picon, L.; Veyrac, M.; Flamant, M.; Savoye, G.; Jian, R.; Devos, M.; Paintaud, G.; Piver, E.; Allez, M.; Mary, J.Y.; Sokol, H.; Colombel, J.F.; Seksik, P. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis. 2014, 20, 978–986.
|
[19] |
Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; van Treuren, W.; Ren, B.Y.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; Morgan, X.C.; Kostic, A.D.; Luo, C.W.; González, A.; McDonald, D.; Haberman, Y.; Walters, T.; Baker, S.; Rosh, J.; Stephens, M.; Heyman, M.; Markowitz, J.; Baldassano, R.; Griffiths, A.; Sylvester, F.; Mack, D.; Kim, S.; Crandall, W.; Hyams, J.; Huttenhower, C.; Knight, R.; Xavier, R.J. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014, 15, 382–392.
|
[20] |
Garcia-Zepeda, E.A.; Rothenberg, M.E.; Ownbey, R.T.; Celestin, J.; Leder, P.; Luster, A.D. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat. Med. 1996, 2, 449–456.
|
[21] |
Reinecker, H.C.; Loh, E.Y.; Ringler, D.J.; Mehta, A.; Rombeau, J.L.; MacDermott, R.P. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology. 1995, 108, 40–50.
|
[22] |
Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J. Med. 1998, 338, 436–445.
|
[23] |
Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009, 2, 1–11.
|
[24] |
Lee, E.H.; Cho, J.H.; Kim, D.H.; Hong, S.H.; Kim, N.H.; Park, M.J.; Hong, E.J.; Cho, Y.J. Anti-inflammatory activity of manassantin A from ultra-fine ground Saururus chinensis in lipopolysaccharide-stimulated RAW 264.7 cells. Appl. Biol. Chem. 2017, 60, 63–71.
|
[25] |
Kim, M.S.; Kim, J.Y. Intestinal anti-inflammatory effects of cinnamon extracts in a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. Appl. Biol. Chem. 2017, 60, 553–561.
|
[26] |
Ryu, H.W.; Park, M.H.; Kwon, O.K.; Kim, D.Y.; Hwang, J.Y.; Jo, Y.H.; Ahn, K.S.; Hwang, B.Y.; Oh, S.R. Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorg. Chem. 2019, 92, 103233.
|
[27] |
Romier-Crouzet, B.; van de Walle, J.; During, A.; Joly, A.; Rousseau, C.; Henry, O.; Larondelle, Y.; Schneider, Y.J. Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells. Food Chem. Toxicol. 2009, 47, 1221–1230.
|
[28] |
Vetrano, S.; Rescigno, M.; Rosaria Cera, M.; Correale, C.; Rumio, C.; Doni, A.; Fantini, M.; Sturm, A.; Borroni, E.; Repici, A.; Locati, M.; Malesci, A.; Dejana, E.; Danese, S. Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008, 135, 173–184.
|
[29] |
Blair, S.A.; Kane, S.V.; Clayburgh, D.R.; Turner, J.R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Investig. 2006, 86, 191–201.
|
[30] |
Lee, S.H. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest. Res. 2015, 13, 11.
|
[1] | 杨雁芳, 张伊楠, 张友波, 杨秀伟. 液质联用法测定吴茱萸碱、吴茱萸次碱、去氢吴茱萸碱在大鼠脑脊液和脑组织中的分布[J]. 中国药学(英文版), 2022, 31(1): 13-22. |
[2] | 刘红菊, 李静, 谢慧仪, 王玲玲, 张志珍, 闫冲. Diaporisoindole B通过抑制MyD88/NF-κB/MAPKs通路对LPS诱导的RAW 264.7巨噬细胞发挥抗炎作用[J]. 中国药学(英文版), 2021, 30(8): 675-685. |
[3] | 黄慧霞, 刘会雪, 马孝杰, 管辉, 杨晓改. 氯化镧和柠檬酸镧在胃肠道以磷酸镧微粒为转化物种且主要通过M细胞进行转运吸收[J]. 中国药学(英文版), 2018, 27(8): 553-564. |
[4] | 杨岸蒲, 卫备, 宋佳芳, 郭相孚, 成羽溪, 何冰, 张华, 王学清, 张强. Caco-2/EAhy926细胞串联复合模型用于Fe3O4纳米粒跨膜转运机制的研究[J]. 中国药学(英文版), 2018, 27(7): 478-489. |
[5] | 姜华, 杨景明, 曹玲, 贾桂枝, 戴红良, 孟祥才. 高温胁迫对防风药材药代动力学和药效的影响[J]. 中国药学(英文版), 2018, 27(2): 109-115. |
[6] | 梁毅, 裴芬, 王弘, 陈世忠. 两种生物碱抑制剂: α-淀粉酶的动力学及分子模拟研究[J]. 中国药学(英文版), 2015, 24(2): 80-87. |
[7] | 许智涵, 王新一, 肖茹月, 杨晓达*. 维生素C与葡萄糖酸锌联用阻止钒化合物引起的MDCK细胞紧密连接破坏[J]. , 2013, 22(5): 403-408. |
[8] | 张小飞, 崔征, 张孝进, 何冰, 王学清, 张华, 钟振林, 张强*. 包载香豆素-6的PEO-(hb-PG)-g-PCL杂臂聚合物胶束的体外评价, 细胞摄取以及跨膜转运[J]. , 2013, 22(3): 251-258. |
[9] | 王秀坤, 王玉刚, 柴玉爽, 胡珺, 詹宏磊, 邢东明, 游雪甫, 王智民, 杨秀伟, 雷帆, 杜力军*. 吴茱萸次碱对血管收缩及RhoA/MLCP-MLC信号通路的影响[J]. , 2012, 21(5): 436-447. |
[10] | 胡传芹, 杨秀伟*. RP-HPLC-DAD法同时测定吴茱萸汤中7个生物碱和2个黄酮苷含量[J]. , 2012, 21(4): 338-344. |
[11] | 张承悦, 赵攀, 施喆, 杨晓达*. 芳香开窍化合物对MDCK-MDR1单层细胞透过性的影响[J]. , 2011, 20(6): 584-589. |
[12] | 郭洁, 徐嵬, 杨秀伟*. 白术内酯类在人源Caco-2细胞单层模型中的肠吸收研究[J]. , 2011, 20(5): 505-509. |
[13] | 张力勤, 黄应栋, 杨秀伟*. 甘草苷和异甘草苷在Caco-2细胞单层模型中的肠吸收研究[J]. , 2010, 19(6): 451-458. |
[14] | 杨秀伟*, 滕杰. 吴茱萸化学成分的研究[J]. , 2007, 16(1): 20-23. |
[15] | 唐元清, 冯孝章, 黄量. 吴茱萸化学成分的研究[J]. , 1997, 6(2): 65-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||