[1] |
Drug Standards of the Ministry of Health of the People’s Republic of China (Mongolian Medicine). Beijing: Chemical Industry Press. 1998, 69.
|
[2] |
Ma, Y.Q. Inner Mongolia Flora. Inner Mongolia People's Publishing House. 1985, 95.
|
[3] |
Gao, X.M.; Guan, L.J. Effect of Mongolian blue thorn on serum alkaline phosphatase and interleukin-1 of ovariectomized rats. Chin. Arch. Tradit. Chin. Med. 2016, 34, 2924–2926.
|
[4] |
Gao, X.M.; Chang, H.; Ding, C.H. Effect of Mongolian Echinops latifolius Tausch on Bone Mineral Density and the Maximum Deflection of Bone in Ovariectomized Rats. China Med. Herald. 2016, 22, 16–19.
|
[5] |
Zhao, J.; Xie, J.H. Clinical Study on Mongolian Medicine Tabusin-2 Capsules for PMOP Bone Pain. J. Med. Pharma. Chin. Minor. 2019, 25, 1–3.
|
[6] |
Shen, C.Y.; Jiang, J.G.; Yang, L.; Wang, D.W.; Zhu, W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br. J. Pharmacol. 2017, 174, 1395–1425.
|
[7] |
Dereli, F.T.G.; Ilhan, M.; Akkol, E.K. New drug discovery from medicinal plants and phytoconstituents for depressive disorders. CNS Neurol. Disord. Drug Targets. 2019, 18, 92–102.
|
[8] |
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441.
|
[9] |
Shahlaei, M. Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem. Rev. 2013, 113, 8093–8103.
|
[10] |
de Beer, D.; Joubert, E.; Malherbe, C.J.; Jacobus Brand, D. Use of countercurrent chromatography during isolation of 6-hydroxyluteolin-7-O-β-glucoside, a major antioxidant of Athrixia phylicoides. J. Chromatogr. A. 2011, 1218, 6179–6186.
|
[11] |
Koleva, I.I.; Niederländer, H.A.G.; van Beek, T.A. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures. Anal. Chem. 2000, 72, 2323–2328.
|
[12] |
Ingkaninan, K.; de Best, C.M.; van der Heijden, R.; Hofte, A.J.P.; Karabatak, B.; Irth, H.; Tjaden, U.R.; van der Greef, J.; Verpoorte, R. High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A. 2000, 872, 61–73.
|
[13] |
Peng, W.B.; Zeng, Q.H.; Li, D.P.; Ding, T.M.; Tan, J.L.; Ding, X.P. Multiple on-line HPLC coupled with biochemical detection methods to evaluate bioactive compounds in Danshen injection. Biomed. Chromatogr. 2016, 30, 1854–1860.
|
[14] |
Li, D.Q.; Zhao, J.; Xie, J.; Li, S.P. A novel sample preparation and on-line HPLC-DAD-MS/MS-BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: case study of α-glucosidase. J. Pharm. Biomed. Anal. 2014, 88, 130–135.
|
[15] |
Cervellati, C.; Bonaccorsi, G.; Piva, I.; Greco, P. Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: Existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss. Indian J. Med. Res. 2018, 147, 341.
|
[16] |
Vrtačnik, P.; Zupan, J.; Mlakar, V.; Kranjc, T.; Marc, J.; Kern, B.; Ostanek, B. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci. Rep. 2018, 8, 16215.
|
[17] |
Wang, J.G.; Wang, L.; Gong, G.; Sun, B.; Shi, H.; Bao, Y.D. Isopsoralen regulates PPARgamma/WNT to inhibit oxidative stress in osteoporosis. Mol. Med. Rep. 2018, 17, 1125–1131.
|
[18] |
Zamani, M.; Moradi Delfani, A.; Jabbari, M. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2018, 201, 288–299.
|
[19] |
Fang, L.; Zhang, H.; Zhou, J.; Geng, Y.L.; Wang, X. Rapid screening and preparative isolation of antioxidants from Alpinia officinarum Hance using HSCCC coupled with DPPH-HPLC assay and evaluation of their antioxidant activities. J. Anal. Methods Chem. 2018, 2018, 1–6.
|
[20] |
Ou, Z.Q.; Schmierer, D.M.; Rades, T.; Larsen, L.; McDowell, A. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J. Pharm. Pharmacol. 2013, 65271–65279.
|
[21] |
Abrankó, L.; Szilvássy, B. Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones. J. Mass Spectrom. 2015, 50, 71–80.
|
[22] |
Li, C.; Huang, C.P.; Lu, T.L.; Wu, L.D.; Deng, S.P.; Yang, R.Y.; Li, J. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper. Rapid Commun. Mass Spectrom. 2014, 28, 2363–2370.
|
[23] |
Gao, Y.; Wang, X.L.; Wang, N.L.; Yao, X.S. Fast determination of substitutional positions of dicaffeoylquinic acid by ESI-MS(n). Chin. J. Med. Chem. 2008, 18, 4–5.
|
[24] |
Forino, M.; Tenore, G.C.; Tartaglione, L.; Carmela, D.; Novellino, E.; Ciminiello, P. (1S,3R,4S,5R)5-O-Caffeoylquinic acid: Isolation, stereo-structure characterization and biological activity. Food Chem. 2015, 178, 306–310.
|
[25] |
Narayanam, M.; Handa, T.R.; Sharma, P.; Jhajra, S.; Muthe, P.K.; Dappili, P.K.; Shah, R.P.; Singh, S. Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products. J. Pharm. Biomed. Anal. 2014, 87, 191–217.
|
[26] |
Rajput, V.K.; Leffler, H.; Nilsson, U.J.; Mukhopadhyay, B. Synthesis and evaluation of iminocoumaryl and coumaryl derivatized glycosides as galectin antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 3516–3520.
|
[27] |
Hao, X.; Han, Z.F.; Li, Y.; Li, C.Y.; Wang, X.; Zhang, X.; Yang, Q.; Ma, B.; Zhu, C.J. Synthesis and structure-activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorg. Med. Chem. Lett. 2017, 27, 887–892.
|
[28] |
Chen, L.; Teng, H.; Xie, Z.L.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J.B. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527.
|
[29] |
Alves, E.F.; Bose, S.K.; Francis, R.C.; El Moussaouiti, M. Trapping of p-coumaryl and coniferyl alcohol during soda-anthraquinone treatment: a means of estimating uncondensed β-O-4 structures in native lignin. J. Agric. Food Chem. 2012, 60, 9202–9210.
|
[30] |
Ahmed, Q.; Sarian, M.; Mat So'ad, S.; Latip, J.; Arief Ichwan, S.; Hussein, N.; Taher, M.; Alhassan, A.; Hamidon, H.; Fakurazi, S. Methylation and acetylation enhanced the antidiabetic activity of some selected flavonoids: in vitro, molecular modelling and structure activity relationship-based study. Biomolecules. 2018, 8, 149.
|
[31] |
Hwang, S.H.; Wang, Z.Q.; Guillen Quispe, Y.N.; Lim, S.S.; Yu, J.M. Evaluation of aldose reductase, protein glycation, and antioxidant inhibitory activities of bioactive flavonoids in matricaria recutita L. and their structure-activity relationship. J. Diabetes Res. 2018, 2018, 1–11.
|
[32] |
Chen, N. Isolation, characterization and antioxidant activities of the endophytic fungi from Hosta. Ventricosa. J. Chin. Pharm. Sci. 2018, 27, 711–718.
|
[33] |
Shi, T.X.; Jiang, Y. Isolation of flavonoids from the aerial parts of Polygala tenuifolia Willd. and their antioxidant activities. J. Chin. Pharm. Sci. 2013, 1, 36–39.
|