[1] |
Zhao, Y.L.; Wang, L.; Xue, B.; Wang, Y.F. Associations between general and central obesity and hypertension among children: the Childhood Obesity Study in China Mega-Cities. Sci. Rep. 2017, 7, 16895.
|
[2] |
Walker, E.; Wolfe, B.M. Editorial comment: obesity in America. Surg. Obes. Relat. Dis. 2017, 13, 1650–1651.
|
[3] |
Africa, J.A.; Newton, K.P.; Schwimmer, J.B. Lifestyle interventions including nutrition, exercise, and supplements for nonalcoholic fatty liver disease in children. Dig. Dis. Sci. 2016, 61, 1375–1386.
|
[4] |
Peixoto, T.C.; Moura, E.G.; de Oliveira, E.; Soares, P.N.; Guarda, D.S.; Bernardino, D.N.; Ai, X.X.; Rodrigues, V.D.S.T.; de Souza, G.R.; da Silva, A.J.R.; Figueiredo, M.S.; Manhães, A.C.; Lisboa, P.C. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur. J. Nutr. 2018, 57, 1829–1844.
|
[5] |
Daoud, A.; Song, J.; Xiao, F.Y.; Shang, J. B-9-3, a novel β-carboline derivative exhibits anti-cancer activity via induction of apoptosis and inhibition of cell migration in vitro. Eur. J. Pharmacol. 2014, 724, 219–230.
|
[6] |
Veeramani, C.; Alsaif, M.A.; Al-Numair, K.S. Herbacetin, a flaxseed flavonoid, ameliorates high percent dietary fat induced insulin resistance and lipid accumulation through the regulation of hepatic lipid metabolizing and lipid-regulating enzymes. Chem. Biol. Interact. 2018, 288, 49–56.
|
[7] |
Zhang, Q.Y.; Liu, J.; Liu, B.; Xia, J.; Chen, N.P.; Chen, X.F.; Cao, Y.; Zhang, C.; Lu, C.J.; Li, M.Y.; Zhu, R.Z. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism. Sci. Rep. 2014, 4, 4628.
|
[8] |
Hou, X.L.; Tong, Q.; Wang, W.Q.; Xiong, W.; Shi, C.Y.; Fang, J.G. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways. Life Sci. 2015, 130, 38–46.
|
[9] |
Li, C.F.; Zeng, X.L.; Huang, J.; Yang, J.N.; Zhang, Q.Y.; Mi, M.T. Dihydromyricetin improves triglyceride accumulation in HepG2 cells by regulating SIRT1 signaling pathway. J. Third Mil. Med. Univ. 2016, 38, 443–448.
|
[10] |
Liu, T.T.; Zeng, Y.; Tang, K.; Chen, X.M.; Zhang, W.; Xu, X.L. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis. 2017, 262, 39–50.
|
[11] |
Williams, J.; Ensor, C.; Gardner, S.; Smith, R.; Lodder, R. BSN723T prevents atherosclerosis and weight gain in ApoE knockout mice fed a western diet. WebmedCentral. 2015, 6, WMC005034.
|
[12] |
Hou, X.L.; Tong, Q.; Wang, W.Q.; Shi, C.Y.; Xiong, W.; Chen, J.; Liu, X.; Fang, J.G. Suppression of inflammatory responses by dihydromyricetin, a flavonoid from ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways. J. Nat. Prod. 2015, 78, 1689–1696.
|
[13] |
Gong, L.; Guo, S.; Zou, Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci. 2020, 242, 117212.
|
[14] |
Lee, E.S.; Kwon, M.H.; Hong, M.K. Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism. 2019, 103, 154015.
|
[15] |
Jia, Q.; Cao, H.; Shen, D.; Li, S.; Yan, L.; Chen, C.; Xing, S.; Dou, F. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int. J. Mol. Med. 2019, 44, 893–902.
|
[16] |
Xu, L.; Yu, Y.; Sang, R.; Li, J.; Ge, B.; Zhang, X. Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF-κB signaling pathways in mice. Oxidative Med. Cell Longev. 2018, 2018, 8284107.
|
[17] |
Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: old questions and new insights. Science. 2011, 332, 1519–1523.
|
[18] |
Zong, H.; Armoni, M.; Harel, C.; Karnieli, E.; Pessin, J.E. Cytochrome P-450 CYP2E1 knockout mice are protected against high-fat diet-induced obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E532–E539.
|
[19] |
Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006, 43, S99–S112.
|
[20] |
Huang, S.Q.; Wan, J.Y.; Du, T.T.; Gong, T.; Zhang, J.; Jiang, X.H. The relationship between the content of 13 amino acids in brain tissue of C57BL/6 mice and the progression of NAFLD disease (English) [J/OL]. J. Chin. Pharm. Sci. 2019, 25, 1–11.
|
[21] |
Younes, R.; Bugianesi, E. Should we undertake surveillance for HCC in patients with NAFLD? J. Hepatol. 2018, 68, 326–334.
|
[22] |
Li, Y.S. Effects of Enshi-ampelopsis grossede on serum lipid and blood rheology and oxygen free radical of hyperlipidemia model rats. J. Hubei Institute Nationalities. 2006, 23, 7–9.
|
[23] |
Wang, J.T.; Jiao, P.; Zhou, Y.; Liu, Q. Protective effect of dihydromyricetin against lipopolysaccharide-induced acute kidney injury in a rat model. Med. Sci. Monit. 2016, 22, 454–459.
|
[24] |
Zhou, Q.C.; Gu, Y.Y.; Lang, H.D.; Wang, X.L.; Chen, K.; Gong, X.H.; Zhou, M.; Ran, L.; Zhu, J.D.; Mi, M.T. Dihydromyricetin prevents obesity-induced slow-twitch-fiber reduction partially via FLCN/FNIP1/AMPK pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1282–1291.
|
[25] |
Schug, T.T.; Li, X. Sirtuin 1 in lipid metabolism and obesity. Ann. Med. 2011, 43, 198–211.
|
[26] |
Ding, R.B.; Bao, J.; Deng, C.X. Emerging roles of SIRT1 in fatty liver diseases. Int. J. Biol. Sci. 2017, 13, 852–867.
|
[27] |
Ponugoti, B.; Kim, D.H.; Xiao, Z.; Smith, Z.; Miao, J.; Zang, M.; Wu, S.Y.; Chiang, C.M.; Veenstra, T.D.; Kemper, J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010, 285, 33959–33970.
|
[28] |
Kemper, J.K.; Choi, S.E.; Kim, D.H. Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 2013, 91, 385–404.
|
[29] |
Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017, 45, 31–37.
|
[30] |
Mottillo, E.P.; Desjardins, E.M.; Crane, J.D.; Smith, B.K.; Green, A.E.; Ducommun, S.; Henriksen, T.I.; Rebalka, I.A.; Razi, A.; Sakamoto, K.; Scheele, C.; Kemp, B.E.; Hawke, T.J.; Ortega, J.; Granneman, J.G.; Steinberg, G.R. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 2016, 24, 118–129.
|
[31] |
Fullerton, M.D.; Galic, S.; Marcinko, K.; Sikkema, S.; Pulinilkunnil, T.; Chen, Z.P.; O'Neill, H.M.; Ford, R.J.; Palanivel, R.; O'Brien, M.; Hardie, D.G.; Macaulay, S.L.; Schertzer, J.D.; Dyck, J.R.B.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 2013, 19, 1649–1654.
|