[1] |
Gupta, R.; Walunj, S.S.; Tokala, R.K.; Parsa, K.V.L.; Singh, S.K.; Pal, M. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of Type 2 Diabetes. Curr. Drug Targets. 2009, 10, 71–87.
|
[2] |
Hwang, H.J.; Jung, T.W.; Ryu, J.Y.; Hong, H.C.; Choi, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, K.M.; Choi, D.S.; Baik, S.H.; Yoo, H.J. Dipeptidyl petidase-IV inhibitor (gemigliptin) inhibits tunicamycin-induced endoplasmic reticulum stress, apoptosis and inflammation in H9c2 cardiomyocytes. Mol. Cell Endocrinol. 2014, 392, 1–7.
|
[3] |
Li, R.; Song, L.H.; Liu, J.; Bai, Y.; Du, Y.M.; Lin, C.H.; Su, X.Y.; Yu, Z.X. Cardioprotective effect of Linagliptin on diabetic Wistar rats. J. Chin. Pharm. Sci. 2021, 30, 334–346.
|
[4] |
Araki, E.; Unno, Y.; Tanaka, Y.; Sakamoto, W.; Miyamoto, Y. Long-term efficacy and safety of linagliptin in a Japanese population with type 2 diabetes Aged ≥ 60 years treated with basal insulin: a randomised trial. Adv. Ther. 2019, 36, 2697–2711.
|
[5] |
Senchenkova, E.Y.; Russell, J.; Yildirim, A.; Granger, D.N.; Gavins, F.N.E. Novel role of T cells and IL-6 (interleukin-6) in angiotensin II-induced microvascular dysfunction. Hypertens. Dallas Tex. 2019, 73, 829–838.
|
[6] |
Khan, R.; Rheaume, E.; Tardif, J.C. Examining the role of and treatment directed at IL-1β in atherosclerosis. Curr. Atheroscler. Rep. 2018, 20, 53.
|
[7] |
Grzanka, M.; Matejko, B.; Szopa, M.; Kiec-Wilk, B.; Malecki, M.T.; Klupa, T. Assessment of newly proposed clinical criteria to Identify HNF1AMODY in patients with an initial diagnosis of type 1 or type 2 diabetes mellitus. Adv. Med. 2016, 2016, 1–3.
|
[8] |
Zhu, Y.H.; Xian, X.M.; Wang, Z.Z.; Bi, Y.C.; Chen, Q.G.; Han, X.F.; Tang, D.Q.; Chen, R.J. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018, 8, 80.
|
[9] |
Li, J.J.; Zhao, X.Q.; Meng, X.; Lin, J.X.; Liu, L.P.; Wang, C.X.; Wang, A.X.; Wang, Y.L.; Wang, Y.J.;. High-sensitive C-reactive protein predicts recurrent stroke and poor functional outcome. Stroke. 2016, 47, 2025–2030.
|
[10] |
Song, Y.X.; Dou, H.; Li, X.J.; Zhao, X.Y.; Li, Y.; Liu, D.; Ji, J.J.; Liu, F.; Ding, L.; Ni, Y.H.; Hou, Y.Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. STEM CELLS. 2017, 35, 1208–1221.
|
[11] |
Qu, H.P.; Liu, Z.J.; Liu, J.L. Measurement of monocyte apoptosis, plasma IL-1β and PR3 activity as an approach to evaluate the immunological status in sepsis. Crit. Care. 2011, 15, 434.
|
[12] |
Böni-Schnetzler, M.; Donath, M.Y. Increased IL-1β activation, the culprit not only for defective insulin secretion but also for insulin resistance? Cell Res. 2011, 21, 995–997.
|
[13] |
Finucane, O.M.; Lyons, C.L.; Murphy, A.M.; Reynolds, C.M.; Klinger, R.; Healy, N.P.; Cooke, A.A.; Coll, R.C.; McAllan, L.; Nilaweera, K.N.; O’Reilly, M.E.; Tierney, A.C.; Morine, M.J.; Alcala-Diaz, J.F.; Lopez-Miranda, J.; O’Connor, D.P.; O’Neill, L.A.; McGillicuddy, F.C.; Roche, H.M. Monounsaturated fatty acid–enriched high-fat diets impede adipose NLRP3 inflammasome–mediated IL-1β secretion and insulin resistance despite obesity. Diabetes. 2015, 64, 2116–2128.
|
[14] |
Tong, L.L.; Adler, S. Glycemic control of type 2 diabetes mellitus across stages of renal impairment: information for primary care providers. Postgrad. Med. 2018, 130, 381–393.
|
[15] |
Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; Holst, J.J.; Langhans, W.; Meier, J.J.; Nauck, M.A.; Perez-Tilve, D.; Pocai, A.; Reimann, F.; Sandoval, D.A.; Schwartz, T.W.; Seeley, R.J.; Stemmer, K.; Tang-Christensen, M.; Woods, S.C.; DiMarchi, R.D.; Tschöp, M.H. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130.
|
[16] |
Ta, N.N.; Schuyler, C.A.; Li, Y.; Lopes-Virella, M.F.; Huang, Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J. Cardiovasc. Pharmacol. 2011, 58, 157–166.
|
[17] |
Nezu, T.; Hosomi, N.; Aoki, S.; Matsumoto, M. Carotid intima-media thickness for atherosclerosis. J. Atheroscler. Thromb. 2016, 23, 18–31.
|
[18] |
Centurión, O.A. Carotid intima-media thickness as a cardiovascular risk factor and imaging pathway of atherosclerosis. Crit. Pathw. Cardiol. 2016, 15, 152–160.
|