[1] |
Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science. 2016, 353, 777–783.
|
[2] |
Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293.
|
[3] |
Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468.
|
[4] |
Niranjan, R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem. Int. 2018, 120, 13–20.
|
[5] |
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014, 14, 463–477.
|
[6] |
Schain, M.; Kreisl, W.C. Neuroinflammation in neurodegenerative disorders—a review. Curr. Neurol. Neurosci. Rep. 2017, 17, 1–11.
|
[7] |
Cowan, M.; Petri, W.A. Microglia: immune regulators of neurodevelopment. Front. Immunol. 2018, 9, 2576.
|
[8] |
Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472.
|
[9] |
Dong, Y.; Li, X.H.; Cheng, J.B.; Hou, L. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target? Int. J. Mol. Sci. 2019, 20, 558.
|
[10] |
Liu, C.Y.; Wang, X.; Liu, C.; Zhang, H.L. Pharmacological targeting of microglial activation: new therapeutic approach. Front. Cell Neurosci. 2019, 13, 514.
|
[11] |
Bock, M.G.; DiPardo, R.M.; Rittle, K.E.; Evans, B.E.; Freidinger, R.M.; Veber, D.F.; Chang, R.S.L.; Chen, T.B.; Keegan, M.E.; Lotti, V.J. Cholecystokinin antagonists. Synthesis of asperlicin analogs with improved potency and water solubility. J. Med. Chem. 1986, 29, 1941–1945.
|
[12] |
Cui, C.M.; Li, X.M.; Li, C.S.; Sun, H.F.; Gao, S.S.; Wang, B.G. Benzodiazepine alkaloids from marine-derived endophytic fungus aspergillus ochraceus. Helv. Chim. Acta. 2009, 92, 1366–1370.
|
[13] |
López-Gresa, M.P.; González, M.C.; Primo, J.; Moya, P.; Romero, V.; Estornell, E. Circumdatin H, a new inhibitor of mitochondrial NADH oxidase, from aspergillus ochraceus. J. Antibiot. 2005, 58, 416–419.
|
[14] |
Sun, H.H.; Barrow, C.J.; Sedlock, D.M.; Gillum, A.M.; Cooper, R. Benzomalvins, new suhstance P inhibitors from a Penicillium sp. J. Antibiot. 1994, 47, 515–522.
|
[15] |
Zhang, C.J.; Hu, L.K.; Liu, D.; Huang, J.; Lin, W.H. Circumdatin D exerts neuroprotective effects by attenuating LPS-induced pro-inflammatory responses and downregulating acetylcholinesterase activity in vitro and in vivo. Front. Pharmacol. 2020, 11, 760.
|
[16] |
Hu, L.K.; Zhang, T.; Liu, D.; Guan, G.W.; Huang, J.; Proksch, P.; Chen, X.M.; Lin, W.H. Notoamide-type alkaloid induced apoptosis and autophagyviaa P38/JNK signaling pathway in hepatocellular carcinoma cells. RSC Adv. 2019, 9, 19855–19868.
|
[17] |
Ni, M.W.; Aschner, M. Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr. Protoc. Toxicol. 2010. DOI:10.1002/0471140856.tx1217s43.
|
[18] |
Zeng, K.W.; Yu, Q.; Liao, L.X.; Song, F.J.; Lv, H.N.; Jiang, Y.; Tu, P.F. Anti-neuroinflammatory effect of MC13, a novel coumarin compound from condiment murraya, through inhibiting lipopolysaccharide-induced TRAF6-TAK1-NF-κb, P38/ERK MAPKS and jak2-stat1/stat3 pathways. J. Cell Biochem. 2015, 116, 1286–1299.
|
[19] |
Leitner, G.R.; Wenzel, T.J.; Marshall, N.; Gates, E.J.; Klegeris, A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert. Opin. Ther. Targets. 2019, 23, 865–882.
|
[20] |
Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: a general review. Int. J. Neurosci. 2017, 127, 624–633.
|