| [1] | Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science.  2016, 353, 777–783. | 
																													
																						| [2] | Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293. | 
																													
																						| [3] | Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. | 
																													
																						| [4] | Niranjan, R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem. Int. 2018, 120, 13–20. | 
																													
																						| [5] | Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014, 14, 463–477. | 
																													
																						| [6] | Schain, M.; Kreisl, W.C. Neuroinflammation in neurodegenerative disorders—a review. Curr. Neurol. Neurosci. Rep. 2017, 17, 1–11. | 
																													
																						| [7] | Cowan, M.; Petri, W.A. Microglia: immune regulators of neurodevelopment. Front. Immunol. 2018, 9, 2576. | 
																													
																						| [8] | Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. | 
																													
																						| [9] | Dong, Y.; Li, X.H.; Cheng, J.B.; Hou, L. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target? Int. J. Mol. Sci. 2019, 20, 558. | 
																													
																						| [10] | Liu, C.Y.; Wang, X.; Liu, C.; Zhang, H.L. Pharmacological targeting of microglial activation: new therapeutic approach. Front. Cell Neurosci. 2019, 13, 514. | 
																													
																						| [11] | Bock, M.G.; DiPardo, R.M.; Rittle, K.E.; Evans, B.E.; Freidinger, R.M.; Veber, D.F.; Chang, R.S.L.; Chen, T.B.; Keegan, M.E.; Lotti, V.J. Cholecystokinin antagonists. Synthesis of asperlicin analogs with improved potency and water solubility. J. Med. Chem. 1986, 29, 1941–1945. | 
																													
																						| [12] | Cui, C.M.; Li, X.M.; Li, C.S.; Sun, H.F.; Gao, S.S.; Wang, B.G. Benzodiazepine alkaloids from marine-derived endophytic fungus aspergillus ochraceus. Helv. Chim. Acta. 2009, 92, 1366–1370. | 
																													
																						| [13] | López-Gresa, M.P.; González, M.C.; Primo, J.; Moya, P.; Romero, V.; Estornell, E. Circumdatin H, a new inhibitor of mitochondrial NADH oxidase, from aspergillus ochraceus. J. Antibiot. 2005, 58, 416–419. | 
																													
																						| [14] | Sun, H.H.; Barrow, C.J.; Sedlock, D.M.; Gillum, A.M.; Cooper, R. Benzomalvins, new suhstance P inhibitors from a Penicillium sp. J. Antibiot. 1994, 47, 515–522. | 
																													
																						| [15] | Zhang, C.J.; Hu, L.K.; Liu, D.; Huang, J.; Lin, W.H. Circumdatin D exerts neuroprotective effects by attenuating LPS-induced pro-inflammatory responses and downregulating acetylcholinesterase activity in vitro and in vivo. Front. Pharmacol. 2020, 11, 760. | 
																													
																						| [16] | Hu, L.K.; Zhang, T.; Liu, D.; Guan, G.W.; Huang, J.; Proksch, P.; Chen, X.M.; Lin, W.H. Notoamide-type alkaloid induced apoptosis and autophagyviaa P38/JNK signaling pathway in hepatocellular carcinoma cells. RSC Adv. 2019, 9, 19855–19868. | 
																													
																						| [17] | Ni, M.W.; Aschner, M. Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr. Protoc. Toxicol. 2010. DOI:10.1002/0471140856.tx1217s43. | 
																													
																						| [18] | Zeng, K.W.; Yu, Q.; Liao, L.X.; Song, F.J.; Lv, H.N.; Jiang, Y.; Tu, P.F. Anti-neuroinflammatory effect of MC13, a novel coumarin compound from condiment murraya, through inhibiting lipopolysaccharide-induced TRAF6-TAK1-NF-κb, P38/ERK MAPKS and jak2-stat1/stat3 pathways. J. Cell Biochem. 2015, 116, 1286–1299. | 
																													
																						| [19] | Leitner, G.R.; Wenzel, T.J.; Marshall, N.; Gates, E.J.; Klegeris, A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert. Opin. Ther. Targets. 2019, 23, 865–882. | 
																													
																						| [20] | Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: a general review. Int. J. Neurosci. 2017, 127, 624–633. |