中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (4): 306-318.DOI: 10.5246/jcps.2021.04.025
收稿日期:
2020-11-15
修回日期:
2020-12-20
接受日期:
2021-01-15
出版日期:
2021-04-30
发布日期:
2021-04-30
通讯作者:
刘翠艳
作者简介:
基金资助:
Chunyang Han#, Taotao Sun#, Guangtai Fan#, Yawei Liu, Cuiyan Liu*()
Received:
2020-11-15
Revised:
2020-12-20
Accepted:
2021-01-15
Online:
2021-04-30
Published:
2021-04-30
Contact:
Cuiyan Liu
About author:
摘要:
研究黄精(Polygonatum sibiricum, PS)对CCl4诱导的大鼠肝损伤的保护作用及其抗氧化机制。采用一次性腹腔注射50%四氯化碳油溶液建立大鼠急性肝损伤模型, 用黄精水提物(PSAE)灌胃治疗, 水飞蓟素作为阳性对照药物, 连续7天。PSAE显著降低了血清丙氨酸转氨酶、天冬氨酸转氨酶和碱性磷酸酶(AST、ALT和ALP)的水平(P < 0.05), 增加了肝组织谷胱甘肽(GSH)和超氧化物歧化酶(T-SOD)的水平(P < 0.05), 降低了肝组织中丙二醛的活性(P < 0.05), 并显著降低了肝细胞中的活性氧水平(P < 0.05)。在肝组织中, 核因子类红细胞2相关因子2(Nrf2), NAD(P)H醌脱氢酶1(NQO-1), 血红素加氧酶1(HO-1) mRNA的表达水平显著升高, p53 mRNA表达显著降低(P < 0.05), Bcl-2(P < 0.05)和Bcl-xL mRNA的表达升高, HO-1蛋白表达升高, Keap-1 mRNA表达无明显差异(P > 0.05)。因此, 黄精对CCl4诱导的急性肝损伤有较好的保护作用, 其机制与有效调节Nrf2-Keap1-ARE通路相关基因和蛋白质的表达、抑制p53途径介导的肝细胞凋亡有关。
Supporting:
韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318.
Chunyang Han, Taotao Sun, Guangtai Fan, Yawei Liu, Cuiyan Liu. Protective effects of Polygonatum sibiricum against CCl4-induced acute liver injury in rats through oxidative stress and mitochondrial apoptotic pathways[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 306-318.
Figure 1. Effect of PSAE on liver coefficient of rats with liver injury induced by CCl4. n = 10 per group. *P < 0.05 vs. control; #P < 0.05 vs. model.
Figure 3. Levels of MDA, GSH, SOD, CAT, ALP, ALT and AST in each group. (A) MDA level; (B) GSH level; (C) SOD level; (D) CAT Level; (E) ALP level; (F) ALT level; (G) AST level. n = 10 per group. *P < 0.05 vs. control; #P < 0.05 vs. model.
Figure 4. Level of ROS of hepatocytes in each group. (A) ROS level in the control group; (B) ROS level in the model group; (C) ROS level in the PSAE group; (D) ROS level in the PC group; (E) ROS level of hepatocytes in each group. n = 10 per group. *P < 0.05 vs. control; #P < 0.05 vs. model.
Figure 5. Levels of Nrf2, Keap-1, HO-1, NQO-1, p53, Bcl-2 and Bcl-xL mRNA in hepatic tissues in each group. (A) Level of Nrf2 mRNA; (B) Level of Keap-1 mRNA; (C) Level of HO-1 mRNA; (D) Level of NQO-1 mRNA; (E) Level of p53 mRNA; (F) Level of Bcl-2 mRNA; (G) Level of Bcl-xL mRNA. n = 10 per group. *P < 0.05 vs. control; #P < 0.05 vs. model.
Figure 6. Liver pathological changes in each group. (A) Control group; (B) Model group; (C) PSAE group; (D) PC group. n = 10 per group. Magnification, × 400. Those labeled S is the normal hepatic tissue, S1 is cell degeneration and vacuolization, S2 is the infiltration of inflammatory cells, S3 is congestion, and S4 is granular degeneration.
[1] |
Zhang, C.P.; Zhang, D. The mechanism of intrahepatic T lymphocytes in acute liver injury. J. Clin. Exp. Med. 2017, 16, 2278–2281.
|
[2] |
Lu, W.; Pan, M.; Fang, Y.K.; Chen, L.; Ye, F. Research progress on the mechanism of traditional Chinese medicine in treating acute liver injury. J. Zhongnan Pharm. 2019, 17, 1504–1507.
|
[3] |
Wu, Y.L.; Lian, L.H.; Nan, J.X. Protective effects of Chinese traditional medicine against liver injury and liver fibrosis and mechanisms involved. World Chin. J. Dig. 2016, 24, 4144–4150.
|
[4] |
Chen, M.J.; Suzuki, A.; Thakkar, S.; Yu, K.; Hu, C.C.; Tong, W.D. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov. Today. 2016, 21, 648–653.
|
[5] |
Li, N.; Yuan, H.D.; Li, D.; Zhao, Q.; Pu, G.C. Research progress on anti-liver injury mechanism of traditional Chinese medicine and its preparations. J. Shandong Med. 2014, 54, 103–105.
|
[6] |
Tan, H.Y.; San-Marina, S.; Wang, N.; Hong, M.; Li, S.; Li, L.; Cheung, F.; Wen, X.Y.; Feng, Y.B. Preclinical models for investigation of herbal medicines in liver diseases: update and perspective. Evid. Based Complement. Alternat. Med. 2016, 2016, 4750163.
|
[7] |
Zhu, L.L.; Xu, W.P. Research progress on pharmacological effects and extraction methods of total saponins and polysaccharides from Polygonatum sibiricum. J. Anhui Med. 2009, 13, 719–722.
|
[8] |
Wujisguleng, W.; Liu, Y.J.; Long, C.L. Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc. Bot. Poloniae. 2012, 81, 239–244.
|
[9] |
Tang, C.; Yu, Y.M.; Guo, P.; Huo, J.Y.; Tang, S.G. Chemical constituents of polygonatum sibiricum. Chem. Nat. Compd. 2019, 55, 331–333.
|
[10] |
Yelithao, K.; Surayot, U.; Park, W.; Lee, S.; Lee, D.H.; You, S.G. Effect of sulfation and partial hydrolysis of polysaccharides from Polygonatum sibiricum on immune-enhancement. Int. J. Biol. Macromol. 2019, 122, 10–18.
|
[11] |
Fu, X.J.; Fu, Z.H. Effects of polygonatum on hemodynamics of rats with chronic renal failure. Chin. Arch. Tradit. Chin. Med. 2012, 10, 2161–2163.
|
[12] |
Zhang, H.; Cai, X.T.; Tian, Q.H.; Xiao, L.X.; Zeng, Z.; Cai, X.T.; Yan, J.Z.; Li, Q.Y. Microwave-assisted degradation of polysaccharide from polygonatum sibiricum and antioxidant activity. J. Food Sci. 2019, 84, 754–761.
|
[13] |
Zhao, X.Y.; Li, J. Chemical constituents of the genus Polygonatum and their role in medicinal treatment. Nat. Prod. Commun. 2015, 10, 683–688.
|
[14] |
Cui, X.W.; Wang, S.Y.; Cao, H.; Guo, H.; Li, Y.J.; Xu, F.X.; Zheng, M.M.; Xi, X.Z.; Han, C.C. A review: the bioactivities and pharmacological applications of polygonatum sibiricum polysaccharides. Molecules. 2018, 23, 1170.
|
[15] |
Yang, J.X.; Wu, S.; Huang, X.L.; Hu, X.Q.; Zhang, Y. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of polygonatum sibiricum in rabbit model and related cellular mechanisms. Evid. Based Complement. Alternat. Med. 2015, 2015, 391065.
|
[16] |
Han, C.Y.; Sun, T.T.; Xv, G.P.; Wang, S.S.; Gu J.G.; Liu C.Y. Berberine ameliorates CCl4-induced liver injury in rats through regulation of the Nrf2-Keap1-ARE and p53 signaling pathways. Mol. Med. Rep. 2019, 20, 3095–3102.
|
[17] |
Tham, N.T.T.; Hwang, S.R.; Bang, J.H.; Yi, H.; Park, Y.I.; Kang, S.J.; Kang, H.G.; Kim, Y.S.; Ku, H.O. High-content analysis of in vitro hepatocyte injury induced by various hepatotoxicants. J. Vet. Sci. 2019, 20, 34–42.
|
[18] |
Peng, J.H.; Cui, T.; Huang, F.; Chen, L.; Zhao, Y.; Xu, L.; Xu, L.L.; Feng, Q.; Hu, Y.Y. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, kupffer cell activation, and endotoxin receptors expression. J. Pharmacol. Exp. Ther. 2013, 344, 646–654.
|
[19] |
Wang, C.Y.; Yang, S.Z.; Chi, B.R.; Sun, L.; Ban, L.; Wang, C.F. The role of TNF-α, IL-6 and ICAM-1 in intestinal endotoxemia during acute liver injury. J. China Gerontol. 2008, 10, 960–961.
|
[20] |
Hine, C.M.; Mitchell, J.R. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction. J. Clin. Exp. Psychopathol. 2012, S4, 291–298.
|
[21] |
Zhang, P.; Singh, A.; Yegnasubramanian, S.; Esopi, D.; Kombairaju, P.; Bodas, M.; Wu, H.; Bova, S.G.; Biswal, S. Loss of kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 2010, 9, 336–346.
|
[22] |
Huo, Y.X.; Li, A.M.; Wang, Z.H.; Wang, X.F.; Zhang, F.; Zhang, P.; Wei, Q.M.; Han, J.H.; Cui, Y.X. Research progress on oxidative stress and idiopathic pulmonary fibrosis. Chin. J. Misdiagn. 2011, 11, 8344–8345.
|
[23] |
Liu, Y.M. Study on the Antioxidant Mechanism of Seaweed Polysaccharides on Human Embryonic Lung Fibroblasts Based on Nrf2/ARE Signal Pathway. D. Shandong Univ. Tradit. Chin. Med. 2017.
|
[24] |
Jian, Z. Study on the role and mechanism of Nrf2-ARE signaling pathway in vitiligo induced stress disease. D. J. Fourth Mil. Med. Univ. 2013.
|
[25] |
Geetha, S.; Jayamurthy, P.; Pal, K.; Pandey, S.; Kumar, R.; Sawhney, R.C. Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. J. Sci. Food Agric. 2008, 88, 1592–1597.
|
[26] |
Dong, D.S.; Zhang, S.; Yin, L.H.; Tang, X.Q.; Xu, Y.W.; Han, X.; Qi, Y.; Peng, J.Y. Protective effects of the total saponins from Rosa laevigata Michx fruit against carbon tetrachloride-induced acute liver injury in mice. Food Chem. Toxicol. 2013, 62, 120–130.
|
[27] |
Ohta, Y.; Sasaki, E.; Nishida, K.; Kobayashi, T.; Nagata, M.; Ishiguro, I. Preventive effect of Dai-saiko-to (da-Chai-hu-Tang) extract on disrupted hepatic active oxygen metabolism in rats with carbon tetrachloride-induced liver injury. Am. J. Chin. Med. 1995, 23, 53–64.
|
[28] |
Ohta, Y.; Kongo, M.; Sasaki, E.; Nishida, K.; Ishiguro, I. Therapeutic effect of melatonin on carbon tetrachloride-induced acute liver injury in rats. J. Pineal Res. 2000, 28, 119–126.
|
[29] |
Li, W.; Peng, R.; Tang, L.B.; Yu, J.C.; Zhou, P. Effect of Dianhuangjing on neurons of cerebral ischemia reperfusion injury in rats. J. Dali Univ. (Nat. Sci.). 2006, 10, 19–21.
|
[30] |
Li, C.; Wan, Q. Relationship between Nrlf2/ARE pathway and diabetes and complications. Southwest Mil. Med. J. 2013, 15, 45–48.
|
[31] |
Wang, N.; Ma, H.P.; Qi, X.Z.; Meng, P.; Jia, Z.P. Research progress of Nrf2-ARE signaling pathway in the protection of oxidative stress injury in the body. J. PLA Med. 2015, 27, 21–27.
|
[32] |
Li, W.G.; Kong, A.N. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 2009, 48, 91–104.
|
[33] |
Tkachev, V.O.; Menshchikova, E.B.; Zenkov, N.K. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochem. 2011, 76, 407–422.
|
[34] |
Magesh, S.; Chen, Y.; Hu, L.Q. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med. Res. Rev. 2012, 32, 687–726.
|
[35] |
Dinkova-Kostova, A.T.; Talalay, P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 2008, 52, S128–S138.
|
[36] |
Zeng, J. Isoglycyrrhizin inhibits ROS and / or NF-κB-mediated activation of NLRP3 inflammatory bodies to promote early brain injury after experimental cerebral hemorrhage by promoting Nrf2 antioxidant pathway. D. Guangzhou Southern Med. Univ. 2017.
|
[37] |
Zhang, H.L. Luteolin reduces liver injury induced by mercury chloride by regulating Nrf2/NF-κB/P53 pathway. D. Northeast Agric. Univ. 2017.
|
[38] |
Ke, B.B.; Shen, X.D.; Gao, F.; Qiao, B.; Ji, H.F.; Busuttil, R.W.; Volk, H.D.; Kupiec-Weglinski, J.W. Small interfering RNA targeting heme oxygenase-1 (HO-1) reinforces liver apoptosis induced by ischemia–reperfusion injury in mice: HO-1 is necessary for cytoprotection. Hum. Gene Ther. 2009, 20, 1133–1142.
|
[39] |
Jun, C.D.; Kim, Y.; Choi, E.Y.; Kim, M.; Park, B.; Youn, B.; Yu, K.; Choi, K.S.; Yoon, K.H.; Choi, S.C.; Lee, M.S.; Park, K.I.; Choi, M.; Chung, Y.; Oh, J. Gliotoxin reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice: Evidence of the connection between heme oxygenase-1 and the nuclear factor-κB pathway in vitro and in vivo. Inflamm. Bowel Dis. 2006, 12, 619–629.
|
[40] |
Faraonio, R.; Vergara, P.; di Marzo, D.; Pierantoni, M.G.; Napolitano, M.; Russo, T.; Cimino, F. P53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 2006, 281, 39776–39784.
|
[41] |
Xiao, Y.S. Anti-hypoxia-induced apoptosis of cerebral cortex neurons in neonatal rats. D. Jiangxi Med. Coll. 2005.
|
[42] |
Lee, C.H.; Park, S.W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.M. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull. 2007, 30, 1898–1904.
|
[43] |
Jin, Y.W.; Rao, Z.; Wu, Y.F.; Zhang, G.Q.; Shi, A.X.; Wei, Y.H.; Wu, X.A. Acetaminophen-induced hepatotoxicity in rats is correlated with the accumulation of bile acids: an underlying mechanism. J. Chin. Pharm. Sci. 2018, 27, 498–509.
|
[1] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[2] | 邹鑫峰, 郭海华, 邓樑钧, 杨淯婷, 袁正强, 谭文. 基于综合因素刺激的肠易激综合征模型构建方法学研究[J]. 中国药学(英文版), 2023, 32(3): 180-189. |
[3] | 阳丽梅, 王丽满, 黄旭慧, 庄捷. 华法林通过调控Gas6/Axl/PI3K/Akt/NF-κB通路影响肺癌细胞株的增殖和凋亡[J]. 中国药学(英文版), 2023, 32(3): 190-199. |
[4] | 郑吴殷晓, 李海平, 罗来春, 胡春玲, 尤朋涛. TOPC通过抑制PI3K/AKT/mTOR通路, 抑制miR-210, Atg7诱导H1975细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 881-892. |
[5] | 陈小青, 彭波, 姜红梅, 张昌旭, 李海燕, 李子银. 丹酚酸B通过介导SIRT3/FOXO1信号通路减轻非酒精性脂肪肝的氧化应激反应[J]. 中国药学(英文版), 2022, 31(9): 698-710. |
[6] | 赵峰, 王瑞, 张洪雄, 高太祥, 王楠. 越婢加术汤对阿霉素肾病大鼠肾脏保护作用的药效学研究[J]. 中国药学(英文版), 2022, 31(9): 711-717. |
[7] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[8] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[9] | 张明康, 陈宇玥, 周燕, 武新安. 槲皮素对四氯化碳致大鼠肝纤维化的缓解作用及其机制研究[J]. 中国药学(英文版), 2022, 31(11): 840-852. |
[10] | 李荣, 宋利华, 刘杰, 白杨, 杜玉茗, 林春华, 苏秀媛, 于宗学. 利格列汀对糖尿病Wistar大鼠心脏保护作用的研究[J]. 中国药学(英文版), 2021, 30(4): 334-346. |
[11] | 黄晋, 杨玲馨, 杨宁, 袁博文, 张浩, 王梦月. 荨麻抑制前列腺增生药理作用研究[J]. 中国药学(英文版), 2020, 29(4): 236-243. |
[12] | 张楠, 高艺文, 吕婵梅, 杨晓丽, 岳桂华. 黄连解毒汤对自发性高血压大鼠血管内皮因子及RhoA蛋白表达的影响[J]. 中国药学(英文版), 2019, 28(2): 114-120. |
[13] | 何鹿玲, 龚琴, 余煊, 王木兰, 翁莎莎, 雷帆, 高红伟, 罗颖颖, 冯育林, 杨世林, 李俊, 杜力军. 腺嘌呤所致大鼠肾损伤的蛋白质组变化及其白头翁皂苷B4的调节作用[J]. 中国药学(英文版), 2019, 28(1): 10-20. |
[14] | 雷丽, 陈宇, 杨思敏, 孟祥豹, 余四旺. 一个新型氮杂萘醌类化合物通过诱导细胞凋亡来抑制肿瘤生长[J]. 中国药学(英文版), 2018, 27(9): 600-607. |
[15] | 姚烨, 酒向飞, 王思媛, 卢炜, 周田彦. 西他列汀影响糖尿病大鼠中二肽基肽酶活性、胰岛素和血糖水平的基于机制的药物动力学/药效动力学模型研究[J]. 中国药学(英文版), 2018, 27(6): 371-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||