中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (11): 881-892.DOI: 10.5246/jcps.2023.11.071
收稿日期:
2023-04-20
修回日期:
2023-06-23
接受日期:
2023-07-19
出版日期:
2023-12-02
发布日期:
2023-12-02
通讯作者:
尤朋涛
作者简介:
基金资助:
Wuyinxiao Zheng, Haiping Li, Laichun Luo, Chunling Hu, Pengtao You*()
Received:
2023-04-20
Revised:
2023-06-23
Accepted:
2023-07-19
Online:
2023-12-02
Published:
2023-12-02
Contact:
Pengtao You
摘要:
TOPC [2-(2,5,5,8a-四甲基-3,4,4a,5,6,7,8,8a-八氢萘-1-基)乙基哌嗪-1-碳二硫酸酯]是我们团队合成的一种结肠酸-二硫氨基甲酸酯衍生物。该化合物对人非小细胞肺癌(NSCLC)细胞系A549和H1975的体外增殖抑制作用优于结肠酸。本研究的主要目的是探讨TOPC对H1975细胞可能的分子机制。MTT法检测细胞增殖, Hoechst 33342染色和Western blotting方法检测TOPC诱导的细胞凋亡, Western blotting检测自噬蛋白表达及相关PI3K/AKT/mTOR信号通路, qRT-PCR检测miR-210 mimic、inhibitor、inhibitor NC的转染率以及miR-210和Atg7的表达。结果表明, TOPC显著抑制A549和H1975细胞增殖。Hoechst 33342染色和Western blotting分析显示TOPC诱导H1975细胞凋亡。Western blotting检测显示, TOPC诱导H1975细胞发生自噬, 同时自噬相关蛋白Beclin-1、Atg5、Atg7、Atg12和LC3-II表达上调。此外, qRT-PCR结果显示TOPC显著下调了H1975细胞中miR-210的表达。进一步研究表明, 抑制PI3K/AKT/mTOR信号通路和抑制miR-210功能在Atg7介导的topc诱导的自噬中起作用。结果表明TOPC能显著抑制A549和H1975细胞的生长,是一种很有前途的非小细胞肺癌治疗药物, 值得进一步开发。
Supporting:
郑吴殷晓, 李海平, 罗来春, 胡春玲, 尤朋涛. TOPC通过抑制PI3K/AKT/mTOR通路, 抑制miR-210, Atg7诱导H1975细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 881-892.
Wuyinxiao Zheng, Haiping Li, Laichun Luo, Chunling Hu, Pengtao You. PI3K/AKT/mTOR pathway inhibition and miR-210-mediated suppression of Atg7 promote autophagy in TOPC-induced apoptosis of H1975 cells[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 881-892.
Figure 2. Effects of coleolic acid and TOPC on the viability of A549 and H1975 cells (A, B). A549 cells treated with different concentrations of coleolic acid or TOPC for 48 h vs. the control (C, D). H1975 cells treated with different concentrations of coleolic acid or TOPC for 48 h vs. the control. Data are represented as mean ± SD, in three separate experiments performed in triplicate. **P < 0.01 vs. the control group.
Figure 3. TOPC induces apoptosis of H1975 cells in the presence of 1, 2, and 4 μg/mL TOPC for 48 h. (A) Fluorescence images (200× magnification) of Hoechst 33342-stained cells. (B, C) The expression levels of cleaved-Caspase 3 and cleaved-Caspase PARP were detected using Western blotting analysis. Data are represented as mean ± SD, in three separate experiments performed in triplicate. *P < 0.05 and **P < 0.01 vs. the control group.
Figure 4. Effects of TOPC on autophagy and autophagy-related PI3K/AKT/mTOR proteins in H1975 cells (A, B). The expressions of autophagy-related proteins were detected using Western blotting analysis (C, D). The expressions of autophagy-related PI3K/AKT/mTOR signaling pathway proteins were detected using Western blotting analysis. Data are represented as mean ± SD, in three separate experiments performed in triplicate. *P < 0.05 and **P < 0.01 vs. the control group.
Figure 5. Autophagy inhibition promotes TOPC-induced apoptosis in H1975 cells. (A, B) The expression levels of LC3-II and cleaved-Caspase 3 were detected using Western blotting analysis. Data are represented as mean ± SD, in three separate experiments performed in triplicate. *P < 0.05 and **P < 0.01 vs. the control group. #P < 0.05 and ##P < 0.01 vs. the TOPC group.
Figure 6. TOPC represses miR-210 expression in H1975 cells. After treatment with different concentrations of TOPC for 48 h, miR-210 expression was analyzed by qRT-PCR in H1975 cells. Data are represented as mean ± SD, in three separate experiments performed in triplicate. **P < 0.01 vs. control group.
Figure 7. TOPC promotes autophagy by inhibiting miR-210 function on Atg7. Transfected or non-transfected H1975 cells were incubated with or without 2 μg/mL TOPC for 48 h. (A) qRT-PCR determined the relative miR-210 expression in H1975 cells after transfection. (B) qRT-PCR determined the relative miR-210 expression in H1975 cells after the corresponding transfection or administration. (C, D) qRT-PCR and Western blotting methods determined the relative expression of Atg7 in H1975 cells after the corresponding transfection or administration. Data are represented as mean ± SD, in three separate experiments performed in triplicate. *P < 0.05 and **P < 0.01 vs. control group. #P < 0.05 and ##P < 0.01 vs. TOPC group.
[1] |
Hua, M.; Ji, X.W.; Li, R.T.; Ji, S.M.; Li, J.; Yao, Q.Y.; Wang, L.J.; Hao, F.R.; Lu, W.; Zhou, T.Y. Pharmacokinetic-pharmacodynamic modeling of the anticancer effect of TM208 on non-small cell lung cancer xenograft. J. Chin. Pharm. Sci. 2016, 25, 502–511.
|
[2] |
Wang, Z.; Wu, X.E.; Liang, Y.N.; Wang, L.; Song, Z.X.; Liu, J.L.; Tang, Z.S. Cordycepin induces apoptosis and inhibits proliferation of human lung cancer cell line H1975 via inhibiting the phosphorylation of EGFR. Molecules. 2016, 21, 1267.
|
[3] |
Huang, Z.F.; Su, W.H.; Lu, T.; Wang, Y.Y.; Dong, Y.T.; Qin, Y.; Liu, D.H.; Sun, L.L.; Jiao, W.J. First-line immune-checkpoint inhibitors in non-small cell lung cancer: current landscape and future progress. Front. Pharmacol. 2020, 11, 578091.
|
[4] |
Han, Y.H.; Mun, J.G.; Jeon, H.D.; Kee, J.Y.; Hong, S.H. Betulin inhibits lung metastasis by inducing cell cycle arrest, autophagy, and apoptosis of metastatic colorectal cancer cells. Nutrients. 2019, 12, 66.
|
[5] |
Boulares, A.H.; Yakovlev, A.G.; Ivanova, V.; Stoica, B.A.; Wang, G.P.; Iyer, S.; Smulson, M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. J. Biol. Chem. 1999, 274, 22932–22940.
|
[6] |
Kim, W.K.; Pyee, Y.; Chung, H.J.; Park, H.J.; Hong, J.Y.; Son, K.H.; Lee, S.K. Antitumor activity of spicatoside A by modulation of autophagy and apoptosis in human colorectal cancer cells. J. Nat. Prod. 2016, 79, 1097–1104.
|
[7] |
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752.
|
[8] |
Wang, S.H.; Xu, X.L.; Hu, Y.L.; Lei, T.; Liu, T.X. Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/akt/mTOR signaling pathway in vivo and in vitro. Front. Pharmacol. 2019, 10, 1460.
|
[9] |
Liu, M.W.; Su, M.X.; Tang, D.Y.; Hao, L.; Xun, X.H.; Huang, Y.Q. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm. Med. 2019, 19, 35.
|
[10] |
Zhang, H.Y.; Liang, H.X.; Wu, S.H.; Zhang, Y.Y.; Yu, Z.J. MicroRNA-638 induces apoptosis and autophagy in human liver cancer cells by targeting enhancer of zeste homolog 2 (EZH2). Environ. Toxicol. Pharmacol. 2021, 82, 103559.
|
[11] |
Wang, N.; Feng, T.; Liu, X.; Liu, Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharmaceutica. 2020, 70, 399–409.
|
[12] |
Li, H.; Huang, D.L.; Hang, S.Y. RETRACTED: Salidroside inhibits the growth, migration and invasion of Wilms’ tumor cells through down-regulation of miR-891b. Life Sci. 2019, 222, 60–68.
|
[13] |
Chen, Y.; Fu, L.L.; Wen, X.; Liu, B.; Huang, J.; Wang, J.H.; Wei, Y.Q. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 2014, 19, 1177–1189.
|
[14] |
Chan, Y.C.; Banerjee, J.; Choi, S.Y.; Sen, C.K. miR-210: the master hypoxamir. Microcirculation. 2012, 19, 215–223.
|
[15] |
Wang, C.; Zhang, Z.Z.; Yang, W.; Ouyang, Z.H.; Xue, J.B.; Li, X.L.; Zhang, J.; Chen, W.K.; Yan, Y.G.; Wang, W.J. miR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed. Pharmacother. 2017, 93, 470–479.
|
[16] |
Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrožić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem. 2020, 27, 1243–1307.
|
[17] |
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541.
|
[18] |
Huang, D.F.; Yang, Y.F.; Ai, L.Q.; Lu, Y.; Wu, H.Z. Studies on the chemical constituents of Coleus forskohlii transplanted in Tongcheng and their antitumor activity. J. Chin. Med. Mater. 2011. 34, 375–378.
|
[19] |
Arsakhant, P.; Sirion, U.; Chairoungdua, A.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. Design and synthesis of C-12 dithiocarbamate andrographolide analogues as an anticancer agent. Bioorg. Med. Chem. Lett. 2020, 30, 127263.
|
[20] |
Ouyang, J.; Sun, F.J.; Feng, W.; Xie, Y.H.; Ren, L.J.; Chen, Y.C. Antimicrobial activity of galangin and its effects on murein hydrolases of vancomycin-intermediate staphylococcus aureus (VISA) strain Mu50. Chemotherapy. 2018, 63, 20–28.
|
[21] |
Yu, J.Y.; Li, X.Q.; Wei, M.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives. Eur. J. Med. Chem. 2019, 169, 21–28.
|
[22] |
Xiang, Y.H.; Li, H.P.; Wang, J.; Peng, X.Z.; Hu, C.L.; Luo, L.C. Design, synthesis, and anticancer activities of 8, 9-substituted Luotonin A analogs as novel topoisomerase I inhibitors. Med. Chem. Res. 2021, 30, 1512–1522.
|
[23] |
Friedlaender, A.; Addeo, A.; Russo, A.; Gregorc, V.; Cortinovis, D.; Rolfo, C. Targeted therapies in early stage NSCLC: hype or hope? Int. J. Mol. Sci. 2020, 21, 6329.
|
[24] |
Liu, F.R.; Gao, S.; Yang, Y.X.; Zhao, X.D.; Fan, Y.M.; Ma, W.X.; Yang, D.R.; Yang, A.M.; Yu, Y. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol. Rep. 2018, 39, 1523–1531.
|
[25] |
Wang, C.; Jiang, L.P.; Wang, S.Q.; Shi, H.G.; Wang, J.W.; Wang, R.; Li, Y.M.; Dou, Y.H.; Liu, Y.; Hou, G.Q.; Ke, Y.; Liu, H.M. The antitumor activity of the novel compound jesridonin on human esophageal carcinoma cells. PLoS One. 2015, 10, e0130284.
|
[26] |
Wang, H.L.; Ge, W.; Jiang, W.; Li, D.; Ju, X.L. SRPK1‑siRNA suppresses K562 cell growth and induces apoptosis via the PARP‑caspase3 pathway. Mol. Med. Rep. 2018, 17, 2070–2076.
|
[27] |
Zhou, L.; Wang, S.S.; Cao, L.N.; Ren, X.M.; Li, Y.H.; Shao, J.H.; Xu, L.C. Lead acetate induces apoptosis in Leydig cells by activating PPARγ/caspase-3/PARP pathway. Int. J. Environ. Health Res. 2021, 31, 34–44.
|
[28] |
Chen, L.A.; Xiong, Y.Q.; Xu, J.; Wang, J.P.; Meng, Z.L.; Hong, Y.Q. Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction. Oncotarget. 2017, 8, 93878–93898.
|
[29] |
Shi, L.; Tu, Y.J.; Xia, Y.; Ye, S.Q.; Ma, C.Z.; Liu, Y.W.; You, P.T. TEEG induced A549 cell autophagy by regulating the PI3K/AKT/mTOR signaling pathway. Anal. Cell Pathol. 2019, 2019, 1–6.
|
[30] |
Nakatogawa, H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 2013, 55, 39–50.
|
[31] |
Clague, M.J.; Urbé, S. Ubiquitin: same molecule, different degradation pathways. Cell. 2010, 143, 682–685.
|
[32] |
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014, 20, 460–473.
|
[33] |
Klionsky, D.J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 2005, 118, 7–18.
|
[34] |
Shen, F.G.; Ge, C.P.; Yuan, P. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling. Eur. J. Pharmacol. 2020, 886, 173550.
|
[35] |
Fu, L.J.; Wu, W.; Sun, X.J.; Zhang, P. Glucocorticoids enhanced osteoclast autophagy through the PI3K/akt/mTOR signaling pathway. Calcif. Tissue Int. 2020, 107, 60–71.
|
[36] |
Yang, J.L.; Pi, C.C.; Wang, G.H. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother. 2018, 103, 699–707.
|
[37] |
Sundarraj, K.; Raghunath, A.; Panneerselvam, L.; Perumal, E. Fisetin inhibits autophagy in HepG2 cells via PI3K/akt/mTOR and AMPK pathway. Nutr. Cancer. 2021, 73, 2502–2514.
|
[38] |
Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.C.; Meijer, A.J.; Codogno, P. Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 2000, 275, 992–998.
|
[39] |
Wu, Y.T.; Tan, H.L.; Shui, G.H.; Bauvy, C.; Huang, Q.; Wenk, M.R.; Ong, C.N.; Codogno, P.; Shen, H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 2010, 285, 10850–10861.
|
[40] |
Sun, W.; Zu, Y.K.; Fu, X.N.; Deng, Y. Knockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy. Oncol. Rep. 2017, 38, 3347–3354.
|
[41] |
Tian, J.; An, X.J.; Niu, L. Role of microRNAs in cardiac development and disease. Exp. Ther. Med. 2017, 13, 3–8.
|
[42] |
Wang, D.F.; Gu, J.; Wang, T.; Ding, Z.J. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics. 2014, 30, 2237–2238.
|
[43] |
Ju, S.; Liang, Z.P.; Li, C.; Ding, C.; Xu, C.; Song, X.Y.; Zhao, J. The effect and mechanism of miR-210 in down-regulating the autophagy of lung cancer cells. Pathol. Res. Pract. 2019, 215, 453–458.
|
[44] |
Li, G.; Wang, B.; Ding, X.C.; Zhang, X.H.; Tang, J.; Lin, H.Q. Plasma extracellular vesicle delivery of miR-210-3p by targeting ATG7 to promote sepsis-induced acute lung injury by regulating autophagy and activating inflammation. Exp. Mol. Med. 2021, 53, 1180–1191.
|
[1] | 阳丽梅, 王丽满, 黄旭慧, 庄捷. 华法林通过调控Gas6/Axl/PI3K/Akt/NF-κB通路影响肺癌细胞株的增殖和凋亡[J]. 中国药学(英文版), 2023, 32(3): 190-199. |
[2] | 韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318. |
[3] | 雷丽, 陈宇, 杨思敏, 孟祥豹, 余四旺. 一个新型氮杂萘醌类化合物通过诱导细胞凋亡来抑制肿瘤生长[J]. 中国药学(英文版), 2018, 27(9): 600-607. |
[4] | 孟雨晴, 王丽超, 李岩, 宋金洋, 杜智勇, 李春, 姜勇, 屠鹏飞, 郭晓宇. 三七-红花有效组分复方对心肌梗死大鼠的保护作用[J]. 中国药学(英文版), 2018, 27(2): 116-122. |
[5] | 冀莎莎, 雷芸, 黄霄天, 高志芹. β-二氢沉香呋喃倍半萜抗Aβ25-35诱导的神经细胞凋亡和氧化损伤的保护作用[J]. 中国药学(英文版), 2016, 25(8): 582-589. |
[6] | 张精亮, 胡涛, 刘晓岩, 朱元军, 陈晓玲, 刘晔, 王银叶. 002C-3通过抑制MMPs和细胞自噬并激活细胞存活相关的钙信号通路保护小鼠脑缺血再灌注损伤[J]. 中国药学(英文版), 2016, 25(8): 598-604. |
[7] | 赵曜, 张婧莹, 胡英杰, 吴佳栓, 卜英子, 吕万良. 柔红霉素与罗非昔布联合应用增强三阴性乳腺癌的治疗效应与作用机制[J]. 中国药学(英文版), 2016, 25(6): 438-447. |
[8] | 王喆, 袁霞, 葛泽梅, 冉福香, 吴军, 李润涛, 崔景荣. 新型蛋白酶体抑制剂YSY-01A诱导PC-3M细胞自噬的作用[J]. 中国药学(英文版), 2014, 23(8): 565-571. |
[9] | 胡振宇, 刘晓岩, 刘秀梅, 杨振军*, 王银叶*. 小牛脾提取物改善环磷酰胺诱导的小鼠白细胞减少症和抑制HL60细胞的糖酵解作用[J]. , 2011, 20(2): 181-187. |
[10] | 钟晗, 辛宏, 朱依谆*. 中药脑必通对急性心肌梗死大鼠的心脏保护作用[J]. , 2010, 19(3): 186-194. |
[11] | 葛嘉, 于艳, 崔德华*, 屠鹏飞* . 南岭柞木苷G对Aβ25-35诱导的PC12细胞损伤的保护作用 [J]. , 2009, 18(1): 73-78. |
[12] | 赵大龙, 申大伟, 迟玉涛, 刘方, 邹莉波, 朱海波*. Liriodendrin对多巴胺所致SH-SY5Y 细胞损伤的保护作用[J]. , 2007, 16(4): 294-299. |
[13] | 周咏明, 郭伟, 周浩, 李慧玉, 刘黎琼, 姚军霞, 郑金娥, 郭天南, 黄士昂*. 曲古菌素A抑制HL-60细胞端粒酶活性及hTERT的表达并诱导凋亡[J]. , 2006, 15(2): 115-120. |
[14] | 贺文彬, 张俊龙, 陈乃宏, 张岭, 朱海波*. 补肾方含药血清促进PC12细胞增殖及其拮抗谷氨酸神经毒作用的研究[J]. , 2005, 14(2): 119-124. |
[15] | 李玉梅, 张春玲, 范芸, 刘俊达*. 中药成分PE对老年人淋巴细胞凋亡的调控作用[J]. , 2003, 12(3): 154-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||