中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (9): 698-710.DOI: 10.5246/jcps.2022.09.059
陈小青, 彭波*(), 姜红梅, 张昌旭, 李海燕, 李子银
收稿日期:
2022-05-23
修回日期:
2022-06-12
接受日期:
2022-06-27
出版日期:
2022-09-30
发布日期:
2022-09-30
通讯作者:
彭波
作者简介:
基金资助:
Xiaoqing Chen, Bo Peng*(), Hongmei Jiang, Changxu Zhang, Haiyan Li, Ziyin Li
Received:
2022-05-23
Revised:
2022-06-12
Accepted:
2022-06-27
Online:
2022-09-30
Published:
2022-09-30
Contact:
Bo Peng
摘要:
丹酚酸B (Salvianolic acid B, Sal B)是一种多酚类抗氧化剂, 已被证明在多种疾病中具有抗脂质积累、抗炎和清除氧自由基的活性。我们旨在研究Sal B是否可以改善非酒精性脂肪性肝病 (Non-alcoholic fatty liver disease, NAFLD)的疾病进展并探索其可能的机制。通过油酸诱导HepG2细胞建立NAFLD模型组细胞, Sal B干预模型细胞建立治疗组细胞, 进行生化分析及油红O染色检测各组细胞内脂质含量, 通过免疫荧光及流式细胞仪检测细胞内活性氧 (reactive oxygen species, ROS)含量; 试剂盒及酶标仪定量细胞内脂氧化物丙二醛 (Malonydialdehyde, MDA)的含量; 通过蛋白质印迹分析、RT-qPCR和免疫沉淀 (Immunoprecipitation, IP)检测参与氧化应激的信号通路蛋白, 包括SIRT3、SOD2和FOXO1通路蛋白。研究发现, 油酸(Oleic acid, OA)可以诱导细胞内脂质、过氧化物及脂氧化物的积累, 降低SIRT3的表达, 并促进FOXO1乙酰化。然而Sal B治疗后显著扭转了这些趋势。进一步通过转染SIRT3质粒及SIRT3 siRNA发现, SIRT3质粒转染后降低了乙酰化FOXO1的表达, 并显著增强了Sal B诱导的SIRT3含量和对FOXO1去乙酰化的调节。SIRT3 siRNA转染后, Sal B诱导的乙酰化FOXO1下调被阻断, 表明Sal B对细胞保护作用是通过SIRT3介导FOXO1去乙酰化所致。SIRT3/FOXO1通路是控制NAFLD氧化应激的关键治疗靶点, Sal B通过SIRT3介导FOXO1去乙酰化能减轻OA诱导的肝脂肪变性和氧化应激反应, 对NAFLD细胞有保护作用。
Supporting:
陈小青, 彭波, 姜红梅, 张昌旭, 李海燕, 李子银. 丹酚酸B通过介导SIRT3/FOXO1信号通路减轻非酒精性脂肪肝的氧化应激反应[J]. 中国药学(英文版), 2022, 31(9): 698-710.
Xiaoqing Chen, Bo Peng, Hongmei Jiang, Changxu Zhang, Haiyan Li, Ziyin Li. Salvianolic acid B alleviates oxidative stress in non-alcoholic fatty liver disease by mediating the SIRT3/FOXO1 signaling pathway[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 698-710.
Figure 1. Sal B eliminates OA-induced HepG2 cell injury and hepatic steatosis. (A) Supernatant levels of ALT and AST. (B) Intracellular levels of TC and TG. The results are mean ± SD compared with the control group. *P < 0.01 and **P <0.01 compared with the model group. (C) Oil red O staining of HepG2 cells in the experimental group: a) cells in the control group were cultured in the complete medium for 24 h; b) cells in the model group were treated with 1 mM OA for 24 h; c) cells in the intervention group were pretreated with 8 μM Sal B for 3 h and then exposed to 1 mM OA for 24 h. Oil red O-stained sections were photographed at 400× magnification. The lipid droplets were dissolved with 60% isopropanol for 10 min, and the OD at a wavelength of 510 nm was measured in a 96-well plate reader.
Figure 2. Sal B alleviates the OA-induced accumulation of peroxide in HepG2 cells. (A) MDA content in HepG2 cells treated with OA and Sal B is shown. After HepG2 cells were treated, 10 μM H2DCFH was added to the cells for 60 min, and the ROS level was observed by fluorescence microscopy. (B) The cells were then collected to detect the ROS content (C) By flow cytometry.
Figure 3. Effects of OA and Sal B on the expressions of SIRT3, SOD2, and acetylated FOXO1 at the mRNA and protein levels. mRNA levels are expressed as the fold change relative to untreated control cells and are expressed as mean ± SD. Western blotting results of SIRT3 and SOD2 protein levels are expressed as acetylated protein/total protein ratio, and β-tubulin was used as an internal reference protein. (A) SIRT3 mRNA levels and (B) SOD2 mRNA levels in HepG2 cells. *P < 0.01 compared with the control group, and **P < 0.01 compared with the model group. Western blotting analysis of (C) SIRT3 and (D) SOD2 protein levels in HepG2 cells. *P < 0.01 compared with the control group, and **P < 0.01 compared with the model group. (E) IP analysis of acetylated FOXO1 protein levels in HepG2 cells. *P < 0.01 compared with the control group, and **P < 0.01 compared with the model group.
Figure 4. Efficiency screening of SIRT3-siRNA and SIRT3 overexpression plasmids transfected into HepG2 cells. HepG2 cells were plated in 24-well plates. When the cell density reached approximately 30%–50%, Lipo2000 was used as the transfection medium. The transfection conditions were observed under a fluorescence microscope (100×) after transfection for 6 h. A–C: The ratio of transfection reagent to siRNA was 1 μL: 20 pmol, 1 μL: 30 pmol, and 1 μL: 40 pmol, respectively. D–F: The ratio of transfection reagent to plasmid was 2 μL: 1 μg, 3 μL: 1 μg, and 4 μL: 1 μg. According to the screening results, the selected transfection conditions were the transfection reagent to siRNA ratio of 1 μL: 40 pmol and the transfection reagent and plasmid ratio of 3 μL: 1 μg.
Figure 5. Sal B-mediated protection is dependent on the SIRT3-induced inhibition of acetylated FOXO1 expression. HepG2 cells were transfected with control siRNA, SIRT3-siRNA, control plasmid, or SIRT3 plasmid and were subsequently exposed to 8 μM Sal B for 3 h. The expression of SIRT3 at the protein level was detected by Western blotting analysis. The FOXO1 protein in whole-cell lysates was immunoprecipitated with an anti-FOXO1 antibody and immunoblotted with an anti-acetyl antibody. *P < 0.01 compared with the control-siRNA group or the control plasmid group, and **P < 0.05 compared with the control-siRNA group or the control plasmid group.
[1] |
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20.
|
[2] |
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016, 65, 1038–1048.
|
[3] |
Yan, T.T.; Yan, N.N.; Wang, P.; Xia, Y.L.; Hao, H.P.; Wang, G.J.; Gonzalez, F.J. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm. Sin. B. 2020, 10, 3–18.
|
[4] |
Ma, Z.L.; Zhang, W.W.; Fan, W.H.; Wu, Y.R.; Zhang, M.H.; Xu, J.; Li, W.Q.; Sun, L.; Liu, W.J.; Liu, W. Forkhead box O1-mediated ubiquitination suppresses RIG-I-mediated antiviral immune responses. Int. Immunopharmacol. 2021, 90, 107152.
|
[5] |
Murtaza, G.; Khan, A.K.; Rashid, R.; Muneer, S.; Hasan, S.M.F.; Chen, J.X. FOXO transcriptional factors and long-term living. Oxidative Med. Cell Longev. 2017, 2017, 3494289.
|
[6] |
Wang, S.; Xia, P.Y.; Huang, G.L.; Zhu, P.P.; Liu, J.; Ye, B.Q.; Du, Y.; Fan, Z.S. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat. Commun. 2016, 7, 11023.
|
[7] |
Rubio, B.; Mora, C.; Pintado, C.; Mazuecos, L.; Fernández, A.; López, V.; Andrés, A.; Gallardo, N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodeling. Metabolism. 2021, 115, 154453.
|
[8] |
Li, P.P.; Song, X.L.; Zhang, D.W.; Guo, N.F.; Wu, C.W.; Chen, K.R.; Liu, Y.; Yuan, L.; Chen, X.L.; Huang, X.Z. Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1-mediated regulation of FoxO1 activity and MnSOD expression. BioFactors. 2020, 46, 168–179.
|
[9] |
Xing, Y.Q.; Li, A.; Yang, Y.; Li, X.X.; Zhang, L.N.; Guo, H.C. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018, 193, 124–131.
|
[10] |
Miyauchi, T.; Uchida, Y.; Kadono, K.; Hirao, H.; Kawasoe, J.; Watanabe, T.; Ueda, S.; Okajima, H.; Terajima, H.; Uemoto, S. Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury. PNAS. 2019, 116, 13533–13542.
|
[11] |
Dolinsky, V.W. The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biol. Chem. 2017, 398, 955–974.
|
[12] |
Xu, X.; Zhu, X.P.; Bai, J.Y.; Xia, P.; Li, Y.; Lu, Y.; Li, X.Y.; Gao, X. Berberine alleviates nonalcoholic fatty liver induced by a high-fat diet in mice by activating SIRT3. FASEB J. 2019, 33, 7289–7300.
|
[13] |
Li, J.Y.; Chen, T.S.; Xiao, M.; Li, N.; Wang, S.J.; Su, H.Y.; Guo, X.B.; Liu, H.; Yan, F.Y.; Yang, Y.; Zhang, Y.; Bu, P.L. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016, 7, 86648–86659.
|
[14] |
Hong, M.; Li, S.; Wang, N.; Tan, H.Y.; Cheung, F.; Feng, Y.B. A biomedical investigation of the hepatoprotective effect of radix salviae miltiorrhizae and network pharmacology-based prediction of the active compounds and molecular targets. Int. J. Mol. Sci. 2017, 18, 620.
|
[15] |
Wang, Y.C.; Chen, J.; Kong, W.Z.; Zhu, R.P.; Liang, K.; Kan, Q.X.; Lou, Y.H.; Liu, X.Y. Regulation of SIRT3/FOXO1 signaling pathway in rats with non-alcoholic steatohepatitis by salvianolic acid B. Arch. Med. Res. 2017, 48, 506–512.
|
[16] |
Tariq, Z.; Green, C.J.; Hodson, L. Are oxidative stress mechanisms the common denominator in the progression from hepatic steatosis towards non-alcoholic steatohepatitis (NASH)? Liver Int. 2014, 34, e180–e190.
|
[17] |
Zhang, Z.F.; Chen, H.S.; Li, Z.R. Simultaneous determination of five bioactive phenolic acids in Salvia yunnanensis and Salvia miltiorrhiza by HPLC. J. Chin. Pharm. Sci. 2010, 19, 271–278.
|
[18] |
Li, C.L.; Liu, B.; Wang, Z.Y.; Xie, F.; Qiao, W.; Cheng, J.; Kuang, J.Y.; Wang, Y.; Zhang, M.X.; Liu, D.S. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J. Mol. Cell Cardiol. 2020, 139, 98–112.
|
[19] |
Shi, Y.N.; da Pan, Yan, L.H.; Chen, H.Y.; Zhang, X.M.; Yuan, J.H.; Mu, B. Salvianolic acid B improved insulin resistance through suppression of hepatic ER stress in ob/ob mice. Biochem. Biophys. Res. Commun. 2020, 526, 733–737.
|
[20] |
Li, L.; Li, R.; Zhu, R.Y.; Chen, B.B.; Tian, Y.M.; Zhang, H.; Xia, B.K.; Jia, Q.Q.; Wang, L.L.; Zhao, D.D.; Mo, F.F.; Li, Y.; Zhang, S.J.; Gao, S.H.; Zhang, D.W.; Guo, S.Z. Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food Funct. 2020, 11, 8743–8756.
|
[21] |
Wang, L.; Liu, X.L.; Nie, J.; Zhang, J.; Kimball, S.R.; Zhang, H.; Zhang, W.J.; Jefferson, L.S.; Cheng, Z.N.; Ji, Q.H.; Shi, Y.G. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology. 2015, 61, 486–496.
|
[22] |
Jha, S.K.; Jha, N.K.; Kumar, D.; Ambasta, R.K.; Kumar, P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2017, 1863, 1132–1146.
|
[23] |
Ajith, T.A. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 413–421.
|
[24] |
Wang, P.J.; Xu, S.Y.; Li, W.Z.; Wang, F.; Yang, Z.; Jiang, L.C.; Wang, Q.L.; Huang, M.Q.; Zhou, P. Salvianolic acid B inhibited PPARγ expression and attenuated weight gain in mice with high-fat diet-induced obesity. Cell Physiol. Biochem. 2014, 34, 288–298.
|
[25] |
Wang, R.; Yu, X.Y.; Guo, Z.Y.; Wang, Y.J.; Wu, Y.; Yuan, Y.F. Inhibitory effects of salvianolic acid B on CCl4-induced hepatic fibrosis through regulating NF-κB/IκBα signaling. J. Ethnopharmacol. 2012, 144, 592–598.
|
[26] |
Zhai, J.H.; Tao, L.N.; Zhang, Y.M.; Gao, H.; Qu, X.Y.; Song, Y.Q.; Zhang, S.X. Salvianolic acid B attenuates apoptosis of HUVEC cells treated with high glucose or high fat via Sirt1 activation. Evid. Based Complementary Altern. Med. 2019, 2019, 9846325.
|
[27] |
Ma, Z.G.; Xia, H.Q.; Cui, S.L.; Yu, J. Attenuation of renal ischemic reperfusion injury by salvianolic acid B via suppressing oxidative stress and inflammation through PI3K/Akt signaling pathway. Braz. J. Med. Biol. Res. 2017, 50, e5954.
|
[28] |
Zhang, X.S.; Wu, Q.; Lu, Y.; Wan, J.R.; Dai, H.B.; Zhou, X.M.; Lv, S.Y.; Chen, X.M.; Zhang, X.; Hang, C.H.; Wang, J. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free. Radic. Biol. Med. 2018, 124, 504–516.
|
[29] |
Li, J.; Li, X.F.; Li, Z.K.; Zhang, L.; Liu, Y.G.; Ding, H.; Yin, S.Y. Isofraxidin, a coumarin component improves high-fat diet induced hepatic lipid homeostasis disorder and macrophage inflammation in mice. Food Funct. 2017, 8, 2886–2896.
|
[30] |
Yoo, A.; Narayan, V.P.; Hong, E.Y.; Whang, W.K.; Park, T. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver. Sci. Rep. 2017, 7, 2251.
|
[31] |
Nassir, F.; Arndt, J.J.; Johnson, S.A.; Ibdah, J.A. Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice. J. Lipid Res. 2018, 59, 967–973.
|
[32] |
Kwon, D.N.; Park, W.J.; Choi, Y.J.; Gurunathan, S.; Kim, J.H. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging. 2015, 7, 579–594.
|
[33] |
Ommer, J.; Selfe, J.L.; Wachtel, M.; O'Brien, E.M.; Laubscher, D.; Roemmele, M.; Kasper, S.; Delattre, O.; Surdez, D.; Petts, G.; Kelsey, A.; Shipley, J.; Schäfer, B.W. Aurora A kinase inhibition destabilizes PAX3-FOXO1 and MYCN and synergizes with navitoclax to induce rhabdomyosarcoma cell death. Cancer Res. 2020, 80, 832–842.
|
[34] |
Elkhwanky, M.S.; Hakkola, J. Extranuclear sirtuins and metabolic stress. Antioxid. Redox Signal. 2018, 28, 662–676.
|
[35] |
Zhang, L.Q.; Zhang, Z.G.; Li, C.B.; Zhu, T.T.; Gao, J.; Zhou, H.; Zheng, Y.Z.; Chang, Q.; Wang, M.S.; Wu, J.Y.; Ran, L.Y.; Wu, Y.J.; Miao, H.L.; Zou, X.J.; Liang, B. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis. Cell Mol. Gastroenterol. Hepatol. 2021, 11, 697–724.
|
[36] |
Kwon, D.N.; Park, W.J.; Choi, Y.J.; Gurunathan, S.; Kim, J.H. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging. 2015, 7, 579–594.
|
[37] |
Tiwari, H.S.; Misra, U.K.; Kalita, J.; Mishra, A.; Shukla, S. Oxidative stress and glutamate excitotoxicity contribute to apoptosis in cerebral venous sinus thrombosis. Neurochem. Int. 2016, 100, 91–96.
|
[38] |
Chang, Y.W.; Zhao, Y.F.; Cao, Y.L.; Gu, X.F.; Li, Z.Q.; Wang, S.Q.; Miao, J.H.; Zhan, H.S. Liver X receptor a inhibits osteosarcoma cell proliferation through up-regulation of FoxO1. Cell Physiol. Biochem. 2013, 32, 180–186.
|
[39] |
Matsuzaki, H.; Lee, S.N.; Maeda, M.; Kumagai-Takei, N.; Nishimura, Y.; Otsuki, T. FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line. J. Immunotoxicol. 2016, 13, 620–627.
|
[40] |
Liu, L.H.; Zheng, L.D.; Zou, P.; Brooke, J.; Smith, C.; Long, Y.C.; Almeida, F.A.; Liu, D.M.; Cheng, Z.Y. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle Georget. Tex. 2016, 15, 2033–2041.
|
[41] |
Li, J.Y.; Chen, T.S.; Xiao, M.; Li, N.; Wang, S.J.; Su, H.Y.; Guo, X.B.; Liu, H.; Yan, F.Y.; Yang, Y.; Zhang, Y.; Bu, P.L. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016, 7, 86648–86659.
|
[42] |
Koltai, E.; Bori, Z.; Osvath, P.; Ihasz, F.; Peter, S.; Toth, G.; Degens, H.; Rittweger, J.; Boldogh, I.; Radak, Z. Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls. Redox Biol. 2018, 19, 46–51.
|
[1] | 黄素琼, 万敬员, 杜婷婷, 龚涛, 张静, 蒋心惠. C57BL/6小鼠脑组织中13种氨基酸含量与NAFLD疾病进展的关系[J]. 中国药学(英文版), 2022, 31(6): 441-451. |
[2] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[3] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[4] | 张明康, 陈宇玥, 周燕, 武新安. 槲皮素对四氯化碳致大鼠肝纤维化的缓解作用及其机制研究[J]. 中国药学(英文版), 2022, 31(11): 840-852. |
[5] | 韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318. |
[6] | 李荣, 宋利华, 刘杰, 白杨, 杜玉茗, 林春华, 苏秀媛, 于宗学. 利格列汀对糖尿病Wistar大鼠心脏保护作用的研究[J]. 中国药学(英文版), 2021, 30(4): 334-346. |
[7] | 黄晋, 杨玲馨, 杨宁, 袁博文, 张浩, 王梦月. 荨麻抑制前列腺增生药理作用研究[J]. 中国药学(英文版), 2020, 29(4): 236-243. |
[8] | 程文文, 张冬梅, 郑强, 李中军, 孟祥豹. 新型组蛋白去乙酰化酶抑制剂的设计、合成及活性评价: 含硫锌离子结合基团的发现 [J]. 中国药学(英文版), 2019, 28(6): 408-421. |
[9] | 王玉鹏, 孙懿, 蒲小平. 内源性抗氧化蛋白DJ-1: 弱精症治疗的潜在靶点[J]. 中国药学(英文版), 2017, 26(10): 697-708. |
[10] | 冀莎莎, 雷芸, 黄霄天, 高志芹. β-二氢沉香呋喃倍半萜抗Aβ25-35诱导的神经细胞凋亡和氧化损伤的保护作用[J]. 中国药学(英文版), 2016, 25(8): 582-589. |
[11] | 于丽娜, 高彩霞, 马俊, 郝雯瑾, 郑秋生. 胃癌抗氧化治疗的研究进展[J]. 中国药学(英文版), 2016, 25(6): 466-476. |
[12] | 杨倩, 陈刚, 杨洋, 蔡雪婷, 庞中化, 胡春萍, 张双全, 曹鹏. 刺芒柄花素通过诱导Nrf2表达缓解DSS诱导的小鼠溃疡性结肠炎[J]. 中国药学(英文版), 2016, 25(3): 178-188. |
[13] | 张聪慧, 王秀伶, 梁晓琳, 张红蕾, 郝庆红. 左旋-5羟基-雌马酚对秀丽隐杆线虫寿命及抗性的影响[J]. 中国药学(英文版), 2014, 23(6): 378-384. |
[14] | 司霞, 马卓, 陈月, 黄琳, 冯婉玉*. 20-羟基蜕皮甾酮对H2O2诱导SH-SY5Y细胞损伤的保护作用[J]. 中国药学(英文版), 2014, 23(1): 33-38. |
[15] | 丁雅光, 张德武, 刘树民, 戴均贵*. 红球菌 Rhodococcus sp. 对葛根素的选择性乙酰化[J]. , 2012, 21(3): 269-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||