中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (11): 840-852.DOI: 10.5246/jcps.2022.11.071
张明康1,2, 陈宇玥2, 周燕2, 武新安1,2,3,*()
收稿日期:
2022-04-30
修回日期:
2022-05-18
接受日期:
2022-06-26
出版日期:
2022-11-30
发布日期:
2022-11-30
通讯作者:
武新安
作者简介:
基金资助:
Mingkang Zhang1,2, Yuyue Chen2, Yan Zhou2, Xin'an Wu1,2,3,*()
Received:
2022-04-30
Revised:
2022-05-18
Accepted:
2022-06-26
Online:
2022-11-30
Published:
2022-11-30
Contact:
Xin'an Wu
摘要:
槲皮素是一种广泛存在于蔬菜和水果中的酚类植物化学物质, 具有抗氧化、抗炎、抗病毒和免疫调节活性, 已成功应用于急慢性疾病的治疗。本研究目的是探讨槲皮素对大鼠肝纤维化的缓解作用并探讨其作用机制。将健康雄性SD大鼠随机分为正常组、模型组和槲皮素组, 每组6只。通过腹腔注射1 mL/kg四氯化碳(50% v/v, 溶于橄榄油), 每周2次, 持续6周诱导肝脏纤维化, 并于第7周灌胃给予槲皮素(100 mg/kg/d)持续至第12周结束。末次给药1 h后, 收集血液和肝脏样品。利用全自动生化仪检测血清肝功能参数(AST、ALT、ALP、GGT和TBA); HE、Masson和天狼星红染色观察肝组织病理形态; Western blotting评价肝纤维化因子(TGF-β1、α-SMA、MMP2和MMP9)和胆汁酸相关调节蛋白(FXR、CYP7A1、CYP8B1和CYP27A1)的表达; 采用试剂盒检测肝组织氧化应激标志物(GSH、GSH-Px、GR、SOD和MDA)的含量; 运用LC-MS/MS测定肝组织中胆汁酸含量。结果发现与模型组相比, 给予槲皮素治疗后可显著降低血清AST、ALT和TBA含量(P < 0.05); 肝纤维化损伤明显改善且纤维化因子TGF-β1、α-SMA、MMP2和MMP9的表达量均显著降低(P < 0.05); 肝GSH、GSH-Px、GR和SOD水平显著升高(P < 0.05), MDA水平显著降低(P < 0.05); 肝胆汁酸含量明显降低(P < 0.05), 且FXR表达量显著升高(P < 0.05), CYP7A1和CYP8B1表达量显著降低(P < 0.05)。研究表明, 槲皮素可有效缓解四氯化碳引起的肝纤维化损伤, 其作用机制与提高肝脏抗氧化应激能力, 减少纤维化因子表达和胆汁酸合成有关。
Supporting:
张明康, 陈宇玥, 周燕, 武新安. 槲皮素对四氯化碳致大鼠肝纤维化的缓解作用及其机制研究[J]. 中国药学(英文版), 2022, 31(11): 840-852.
Mingkang Zhang, Yuyue Chen, Yan Zhou, Xin'an Wu. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 840-852.
Figure 1. The effect of quercetin on liver histopathology. H&E staining. Magnification, ×200; Masson’s trichrome staining. Magnification, ×100; Sirus Red staining. Magnification, ×100.
Figure 2. The effect of quercetin on liver fibrosis-related regulatory proteins. Values are represented as mean ± SD for three rats in each group. *P < 0.05, **P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared with the model group. One-way ANOVA followed by Newman-Keuls multiple comparison test. TGF-β1: Transforming growth factor-β1; α-SMA: α-smooth muscle actin; MMP2: Matrix metalloproteinase 2; MMP9: Matrix metalloproteinase 9.
Figure 3. The effects of quercetin on liver oxidative stress. Values are represented as mean ± SD for six rats in each group. *P < 0.05, **P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared with the model group. One-way ANOVA followed by Newman-Keuls multiple comparison test. SD: Standard deviation; GSH: Glutathione; GSH-Px: Glutathione peroxidase; GR: Glutathion reductases; MDA: Malondialdehyde; SOD: Superoxide dismutase.
Figure 4. The effect of quercetin on liver bile acid. A: The concentration of liver unconjugated bile acid (ng/g). B: The concentration of liver TLCA (ng/g). C: The concentration of liver glycine-conjugated bile acids (ng/g). Values are represented as mean ± SD for six rats in each group. *P < 0.05, **P < 0.01, compared with the control group; # P< 0.05, ##P < 0.01, compared with the model group. One-way ANOVA followed by Newman-Keuls multiple comparison test.
Figure 5. The effect of quercetin on liver bile acid-related metabolic enzymes. Values are represented as mean ± SD for three rats in each group. *P < 0.05, **P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared with the model group. One-way ANOVA followed by Newman-Keuls multiple comparison test. FXR: Farnesol X receptor; CYP7A1: Cholesterol-7α-hydroxylase; CYP8B1: Cholesterol-12α-hydroxylase; CYP27A1: Cholesterol-27α-hydroxylase.
[1] |
Song, Y.N.; Dong, S.; Wei, B.; Liu, P.; Zhang, Y.Y.; Su, S.B. Metabolomic mechanisms of gypenoside against liver fibrosis in rats: an integrative analysis of proteomics and metabolomics data. PLoS One. 2017, 12, e0173598.
|
[2] |
Yoshioka, H.; Nonogaki, T.; Fukaya, S.; Ichimaru, Y.; Nagatsu, A.; Yoshikawa, M.; Fujii, H.; Nakao, M. Sasa veitchii extract protects against carbon tetrachloride-induced hepatic fibrosis in mice. Environ. Heal. Prev. Med. 2018, 23, 49.
|
[3] |
Lu, J.; Chen, B.A.; Li, S.L.; Sun, Q. Tryptase inhibitor APC 366 prevents hepatic fibrosis by inhibiting collagen synthesis induced by tryptase/protease-activated receptor 2 interactions in hepatic stellate cells. Int. Immunopharmacol. 2014, 20, 352–357.
|
[4] |
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020, 9, 875.
|
[5] |
Sanchez-Valle, V.; Chavez-Tapia, N.C.; Uribe, M.; Mendez-Sanchez, N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem. 2012, 19, 4850–4860.
|
[6] |
Li, X.M.; Peng, J.H.; Sun, Z.L.; Tian, H.J.; Duan, X.H.; Liu, L.; Ma, X.; Feng, Q.; Liu, P.; Hu, Y.Y. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2 and the TGF-β/Smad signaling pathways. Acta Pharmacol. Sin. 2016, 37, 783–793.
|
[7] |
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019, 65, 37–55.
|
[8] |
Lin, L.G.; Zhou, F.Y.; Shen, S.N.; Zhang, T. Fighting liver fibrosis with naturally occurring antioxidants. Planta Med. 2018, 84, 1318–1333.
|
[9] |
Turkseven, S.; Bolognesi, M.; Brocca, A.; Pesce, P.; Angeli, P.; di Pascoli, M. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G298–G304.
|
[10] |
Gu, J.Y.; Chen, C.; Wang, J.; Chen, T.T.; Yao, W.J.; Yan, T.D.; Liu, Z.G. Withaferin A exerts preventive effect on liver fibrosis through oxidative stress inhibition in a sirtuin 3-dependent manner. Oxid. Med. Cell Longev. 2020, 2020, 2452848.
|
[11] |
Ezhilarasan, D. Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J. Gastroenterol. 2018, 19, 56–64.
|
[12] |
Asgharpour, A.; Kumar, D.; Sanyal, A. Bile acids: emerging role in management of liver diseases. Hepatol. Int. 2015, 9, 527–533.
|
[13] |
He, H.W.; Mennone, A.; Boyer, J.L.; Cai, S.Y. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology. 2011, 53, 548–557.
|
[14] |
Li, T.T.; Xu, L.J.; Zheng, R.Y.; Wang, X.J.; Li, L.W.; Ji, H.; Hu, Q.H. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. Phytomedicine.2020, 68, 153153.
|
[15] |
Padma, V.V.; Lalitha, G.; Shirony, N.P.; Baskaran, R. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats. Asian Pac. J. Trop. Biomed. 2012, 2, 910–915.
|
[16] |
Hernández-Ortega, L.D.; Alcántar-Díaz, B.E.; Ruiz-Corro, L.A.; Sandoval-Rodriguez, A.; Bueno-Topete, M.; Armendariz-Borunda, J.; Salazar-Montes, A.M. Quercetin improves hepatic fibrosis reducing hepatic stellate cells and regulating pro-fibrogenic/anti-fibrogenic molecules balance. J. Gastroenterol. Hepatol. 2012, 27, 1865–1872.
|
[17] |
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell Longev. 2016, 2016, 2986796.
|
[18] |
Kemelo, M.K.; Pierzynová, A.; Kutinová Canová, N.; Kučera, T.; Farghali, H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chem. Biol. Interact. 2017, 269, 1–8.
|
[19] |
Guzel, A.; Yunusoglu, S.; Calapoglu, M.; Candan, I.A.; Onaran, I.; Oncu, M.; Ergun, O.; Oksay, T. Protective effects of quercetin on oxidative stress-induced tubular epithelial damage in the experimental rat hyperoxaluria model. Medicina. 2021, 57, 566.
|
[20] |
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today. 2020, 25, 209–222.
|
[21] |
Wu, Y.; Li, Z.; Xiu, A.Y.; Meng, D.X.; Wang, S.N.; Zhang, C.Q. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des. Dev. Ther. 2019, 13, 2667–2676.
|
[22] |
Dong, S.; Cai, F.F.; Chen, Q.L.; Song, Y.N.; Sun, Y.; Wei, B.; Li, X.Y.; Hu, Y.Y.; Liu, P.; Su, S.B. Chinese herbal formula Fuzheng Huayu alleviates CCl4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol. Sin. 2018, 39, 930–941.
|
[23] |
Ceriotti, F.; Henny, J.; Queraltó, J.; Shen, Z.Y.; Özarda, Y.; Chen, B.R.; Boyd, J.C.; Panteghini, M.; IFCC Committee on Reference Intervals and Decision Limits, Committee on Reference Systems for Enzymes. Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin. Chem. Lab. Med. 2010, 48, 1593–1601.
|
[24] |
Call, L.; Molina, T.; Stoll, B.; Guthrie, G.; Chacko, S.; Plat, J.; Robinson, J.; Lin, S.; Vonderohe, C.; Mohammad, M.; Kunichoff, D.; Cruz, S.; Lau, P.; Premkumar, M.; Nielsen, J.; Fang, Z.F.; Olutoye, O.; Thymann, T.; Burrin, D. Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. J. Lipid Res. 2020, 61, 1038–1051.
|
[25] |
Asghari, S.; Hamedi-Shahraki, S.; Amirkhizi, F. Systemic redox imbalance in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2020, 50, e13211.
|
[26] |
Wei, J.; Chen, J.R.; Fu, L.L.; Han, L.F.; Gao, X.M.; Sarhene, M.; Hu, L.M.; Zhang, Y.C.; Fan, G.W. Polygonum multiflorum Thunb suppress bile acid synthesis by activating Fxr-Fgf15 signaling in the intestine. J. Ethnopharmacol. 2019, 235, 472–480.
|
[27] |
Fang, C.; Sidhu, P.S. Ultrasound-based liver elastography: current results and future perspectives. Abdom. Radiol. NY. 2020, 45, 3463–3472.
|
[28] |
Khomich, O.; Ivanov, A.V.; Bartosch, B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells. 2019, 9, 24.
|
[29] |
Schuppan, D.; Ashfaq-Khan, M.; Yang, A.T.; Kim, Y.O. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 2018, 68/69, 435–451.
|
[30] |
Ustuner, D.; Kolac, U.K.; Ustuner, M.C.; Tanrikut, C.; Ozdemir Koroglu, Z.; Burukoglu Donmez, D.; Ozen, H.; Ozden, H. Naringenin ameliorate carbon tetrachloride-induced hepatic damage through inhibition of endoplasmic reticulum stress and autophagy in rats. J. Med. Food. 2020, 23, 1192–1200.
|
[31] |
Elkhoely, A. Diallyl sulfide ameliorates carbon tetrachloride-induced hepatotoxicity in rats via suppressing stress-activated MAPK signaling pathways. J. Biochem. Mol. Toxicol. 2019, 33, e22307.
|
[32] |
Afifi, N.A.; Ibrahim, M.A.; Galal, M.K. Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats. Can. J. Physiol. Pharmacol. 2018, 96, 624–629.
|
[33] |
Chiş, I.C.; Mureşan, A.; Oros, A.; Nagy, A.L.; Clichici, S. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats. Acta Physiol. Hung. 2016, 103, 49–64.
|
[34] |
Lin, S.Y.; Wang, Y.Y.; Chen, W.Y.; Chuang, Y.H.; Pan, P.H.; Chen, C.J. Beneficial effect of quercetin on cholestatic liver injury. J. Nutr. Biochem. 2014, 25, 1183–1195.
|
[35] |
Wei, J.; Chen, J.R.; Fu, L.L.; Han, L.F.; Gao, X.M.; Sarhene, M.; Hu, L.M.; Zhang, Y.C.; Fan, G.W. Polygonum multiflorum Thunb suppress bile acid synthesis by activating Fxr-Fgf15 signaling in the intestine. J. Ethnopharmacol. 2019, 235, 472–480.
|
[36] |
Thakare, R.; Alamoudi, J.A.; Gautam, N.; Rodrigues, A.D.; Alnouti, Y. Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 2018, 38, 1323–1335.
|
[37] |
Zhang, F.; Xi, L.L.; Duan, Y.T.; Qin, H.Y.; Wei, M.M.; Wu, Y.F.; Li, B.X.; Zhou, Y.; Wu, X.N. The ileum-liver Farnesoid X Receptor signaling axis mediates the compensatory mechanism of 17α-ethynylestradiol-induced cholestasis via increasing hepatic biosynthesis of chenodeoxycholic acids in rats. Eur. J. Pharm. Sci. 2018, 123, 404–415.
|
[38] |
Hirschfield, G.M.; Heathcote, E.J.; Gershwin, M.E. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology. 2010, 139, 1481–1496.
|
[39] |
Liu, Y.H.; Chen, K.F.; Li, F.Y.; Gu, Z.L.; Liu, Q.; He, L.Q.; Shao, T.; Song, Q.; Zhu, F.X.; Zhang, L.H.; Jiang, M.W.; Zhou, Y.; Barve, S.; Zhang, X.; McClain, C.J.; Feng, W.K. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology. 2020, 71, 2050–2066.
|
[40] |
Kong, B.; Wang, L.; Chiang, J.Y.L.; Zhang, Y.C.; Klaassen, C.D.; Guo, G.L. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 2012, 56, 1034–1043.
|
[41] |
Schadt, H.S.; Wolf, A.; Pognan, F.; Chibout, S.D.; Merz, M.; Kullak-Ublick, G.A. Bile acids in drug induced liver injury: key players and surrogate markers. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 257–266.
|
[1] | 邓凯翔, 彭经宙, 张美泉, 林慧娟, 王小华, 何道兴, 朱俊明, 陈明光, 黄津. 牡蛎肽通过NF-κB/iNOS信号通路改善肝纤维化[J]. 中国药学(英文版), 2023, 32(6): 435-445. |
[2] | 陈培杰, 张云天. PTP1B抑制肝纤维化逆转期TRAIL诱导的肝星状细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 867-880. |
[3] | 黄津, 邓凯翔, 黄美珍, 林高敏, 林媚, 练水梅, 张美泉. NF-κB抑制剂PDTC诱导人肝星状细胞LX-2凋亡的药理机制[J]. 中国药学(英文版), 2022, 31(9): 665-676. |
[4] | 陈小青, 彭波, 姜红梅, 张昌旭, 李海燕, 李子银. 丹酚酸B通过介导SIRT3/FOXO1信号通路减轻非酒精性脂肪肝的氧化应激反应[J]. 中国药学(英文版), 2022, 31(9): 698-710. |
[5] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[6] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[7] | 韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318. |
[8] | 李荣, 宋利华, 刘杰, 白杨, 杜玉茗, 林春华, 苏秀媛, 于宗学. 利格列汀对糖尿病Wistar大鼠心脏保护作用的研究[J]. 中国药学(英文版), 2021, 30(4): 334-346. |
[9] | 黄晋, 杨玲馨, 杨宁, 袁博文, 张浩, 王梦月. 荨麻抑制前列腺增生药理作用研究[J]. 中国药学(英文版), 2020, 29(4): 236-243. |
[10] | 刘蒸生, 郝海军, 范明松. 槲皮素磷脂复合物固体分散体和固体分散体的制备及评价[J]. 中国药学(英文版), 2019, 28(12): 868-877. |
[11] | 王玉鹏, 孙懿, 蒲小平. 内源性抗氧化蛋白DJ-1: 弱精症治疗的潜在靶点[J]. 中国药学(英文版), 2017, 26(10): 697-708. |
[12] | 刘焕, 范珊珊, 张雯, 张驿帆, 李腾, 尚明英, 刘广学, 徐风, 蔡少青. UPLC-MS-MS法测定大鼠血浆中8,2′-二异戊烯基槲皮素-3-甲醚的浓度及其药物动力学研究[J]. 中国药学(英文版), 2017, 26(10): 747-753. |
[13] | 冀莎莎, 雷芸, 黄霄天, 高志芹. β-二氢沉香呋喃倍半萜抗Aβ25-35诱导的神经细胞凋亡和氧化损伤的保护作用[J]. 中国药学(英文版), 2016, 25(8): 582-589. |
[14] | 于丽娜, 高彩霞, 马俊, 郝雯瑾, 郑秋生. 胃癌抗氧化治疗的研究进展[J]. 中国药学(英文版), 2016, 25(6): 466-476. |
[15] | 杨倩, 陈刚, 杨洋, 蔡雪婷, 庞中化, 胡春萍, 张双全, 曹鹏. 刺芒柄花素通过诱导Nrf2表达缓解DSS诱导的小鼠溃疡性结肠炎[J]. 中国药学(英文版), 2016, 25(3): 178-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||