中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (3): 163-175.DOI: 10.5246/jcps.2022.03.014
• 【研究论文】 • 下一篇
王颖峥1,#, 杨策1,2,#, 朱翠萍1, 赵茜茜1, 卢雪花3, 苏晓宇1,*(), 王英豪1,*()
收稿日期:
2021-11-14
修回日期:
2021-12-08
接受日期:
2022-01-12
出版日期:
2022-03-31
发布日期:
2022-03-31
通讯作者:
苏晓宇, 王英豪
作者简介:
基金资助:
Yingzheng Wang1,#, Ce Yang1,2,#, Cuiping Zhu1, Qianqian Zhao1, Xuehua Lu3, Xiaoyu Su1,*(), Yinghao Wang1,*()
Received:
2021-11-14
Revised:
2021-12-08
Accepted:
2022-01-12
Online:
2022-03-31
Published:
2022-03-31
Contact:
Xiaoyu Su, Yinghao Wang
About author:
摘要:
类风湿性关节炎(RA)是世界上最难以治愈的疾病之一。中药羌活(NE)常用于治疗上肢疼痛。NE可显著降低上肢关节炎大鼠炎性疼痛靶点P2X3受体的表达。为了验证NE治疗"上肢痹痛"的机制与P2X3受体介导的PKC炎症反应途径有关, 本研究采用超高效液相色谱法测定NE乙酸乙酯部位的药效物质, 将SD大鼠随机分为空白组、模型组、羌活组和阳性药组, 21天后取关节组织。体外培养的RA-FLS细胞, 分为模型组、羌活组和阳性药组。Western blot检测P2X3和PKC炎症途径指标的表达。P2X3抑制剂(A-317491)作用于RA-FLS细胞, 并设模型组和阳性药组, 检测PKC蛋白的表达。实验发现, NE降低大鼠和RA-FLS细胞中P2X3、Rab7、PKC、NF-κB的蛋白表达。NE和P2X3受体拮抗剂对RA-FLS细胞PKC通路的关键蛋白表达的降低程度相似, 且作用没有叠加性。结果表明, NE能够有效改善RA大鼠"上肢痹痛", 其机制与P2X3/Rab7/PKC/NF-κB通路密切相关。
Supporting:
王颖峥, 杨策, 朱翠萍, 赵茜茜, 卢雪花, 苏晓宇, 王英豪. 羌活通过调节P2X3抑制PKC诱导的炎症反应治疗"上肢痹痛"[J]. 中国药学(英文版), 2022, 31(3): 163-175.
Yingzheng Wang, Ce Yang, Cuiping Zhu, Qianqian Zhao, Xuehua Lu, Xiaoyu Su, Yinghao Wang. Upper limb arthromyodynia can be treated with Notopterygium by down-regulating P2X3 to mediate PKC-induced inflammatory response[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(3): 163-175.
Figure 1. UPLC chromatogram of NE active site. Peaks 1–7 were the main chromatographic peaks of the active part. Peak 7 was determined to be isoimperatorin at 8.89 min, which was selected as the internal reference peak. Peaks 1 and 6 were ferulic acid and NE, respectively.
Figure 2. UPLC fingerprint of NE active site. S1–10 were the chromatographic peaks of 10 different batches of test products. R was for reference chromatography.
Figure 3. Toe volume maps for different groups of treatments. Representative photographs of the (control) control group, (AA) model group, (AA + PNE) positive group, and (AA + NE) NE group. AA, adjuvant arthritis; PNE, prednisone; NE, herbal NE extract.
Figure 4. Effects of NE and PNE on pain threshold, IL-6, TNF-α, and PGE2 in AA rats. NE and PNE prevented the decreased pain threshold (a) and reduced the increased inflammatory factor levels of IL-6 (b), TNF-α (c), and PGE2 (d) in AA rats. Inflammatory factor levels were measured by ELISA. ##P < 0.01 and ###P < 0.001 compared with the normal group, *P < 0.05, **P < 0.01 and ***P < 0.001 compared with the AA group.
Figure 5. Effects of NE and PNE on CXCL1 in AA rats. NE and PNE reduced the increased protein level of CXCL1 in AA rats. Representative Western blots probed with the antibody against CXCL1 and re-probed with an anti-GAPDH antibody. The values of CXCL1 protein, normalized to GAPDH levels, were shown beneath their respective Western blots. ###P < 0.001 compared with the normal group, **P < 0.01 compared with the AA group.
Figure 6. Effects of NE and PNE on P2X3, Rab7, PKC, and NF-κB in AA rats. NE and PNE reduced the increased protein levels of P2X3 (a), Rab7 (b), PKC (c), and NF-κB (d) proteins in AA rats. Representative Western blots probed with the antibody against P2X3, Rab7, PKC, NF-κB. P2X3, Rab7, and PKC were re-probed with anti-GAPDH antibody, and NF-κB was re-probed with anti-H3 antibody. The values of protein, normalized to GAPDH levels, were shown beneath their respective Western blots. #P < 0.05 and ##P < 0.001 compared with the normal group, *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the AA group.
Figure 7. Effects of NE and PNE on CXCL1 in RA-FLS cells. NE and PNE reduced the increased protein level of CXCL1 in RA-FLS cells. Representative Western blots probed with the antibody against CXCL1 and re-probed with an anti-β-actin antibody. The values of CXCL1 protein, normalized to β-actin levels, were shown beneath their respective Western blots. **P < 0.01 compared with the control group.
Figure 8. Effects of NE and PNE on P2X3, Rab7, PKC, and NF-κB in RA-FLS Cells. NE and PNE reduced the increased protein levels of P2X3 (a), Rab7 (b), and PKC (c), NF-κB (d) in RA-FLS cells. Representative Western blots probed with the antibody against P2X3, Rab7, PKC, NF-κB. P2X3, Rab7, and PKC were re-probed with anti-β-actin antibody, and NF-κB was re-probed with anti-H3 antibody. The values of protein, normalized to β-actin levels, were shown beneath their respective Western blots. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the control group.
Figure 9. Effects of NE and A-317491 on PKC in RA-FLS cells. NE and NE + A-317491 reduced the increased level of PKC protein in RA-FLS cells. Representative Western blots probed with the antibody against PKC and re-probed with an anti-β-actin antibody. The values of protein, normalized to β-actin levels, were shown beneath their respective Western blots. *P < 0.05 and **P < 0.01 compared with the control group.
[1] |
Choi, E.M.; Kim, Y.H. Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation. Cell Biol. Toxicol. 2008, 24, 225–231.
|
[2] |
Malochet-Guinamand, S.; Lambert, C.; Gossec, L.; Soubrier, M.; Dougados, M. Evaluation of the implementation of guidelines on the treatment of osteoporosis in patients with rheumatoid arthritis. J. Rheumatol. 2020, 47, 6–14.
|
[3] |
Hyndman, I.J. Rheumatoid arthritis: past, present and future approaches to treating the disease. Int. J. Rheum. Dis. 2017, 20, 417–419.
|
[4] |
Guo, Q.; Wang, Y.X.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J.K. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15.
|
[5] |
Linares, V.; Alonso, V.; Domingo, J.L. Oxidative stress as a mechanism underlying sulfasalazine-induced toxicity. Expert. Opin. Drug Saf. 2011, 10, 253–263.
|
[6] |
van der Heijden, J.W.; Assaraf, Y.G.; Gerards, A.H.; Oerlemans, R.; Lems, W.F.; Scheper, R.J.; Dijkmans, B.A.; Jansen, G. Methotrexate analogues display enhanced inhibition of TNF-α production in whole blood from RA patients. Scand. J. Rheumatol. 2014, 43, 9–16.
|
[7] |
Brown, P.M.; Pratt, A.G.; Isaacs, J.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol. 2016, 12, 731–742.
|
[8] |
Yates, M.; Hamilton, L.E.; Elender, F.; Dean, L.; Doll, H.; MacGregor, A.J.; Thomas, J.; Gaffney, K. Is etanercept 25 Mg once weekly as effective as 50 Mg at maintaining response in patients with ankylosing spondylitis? A randomized control trial. J. Rheumatol. 2015, 42, 1177–1185.
|
[9] |
Raimondo, M.G.; Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des. Dev. Ther. 2017, 11, 1593–1603.
|
[10] |
Jin, X.; Ding, C. Belimumab: an anti-BLyS human monoclonal antibody for rheumatoid arthritis. Expert. Opin. Biol. Ther. 2013, 13, 315–322.
|
[11] |
Mélet, J.; Mulleman, D.; Goupille, P.; Ribourtout, B.; Watier, H.; Thibault, G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum. 2013, 65, 2783–2790.
|
[12] |
Pisetsky, D.S. Advances in the treatment of rheumatoid arthritis. North Carol. Med. J. 2017, 78, 337–340.
|
[13] |
Wang, Y.H.; Chen, Z.H.; Liu, C.; Lu, X.H.; Yang, C.; Qiu, S.P. Distributive differences of P2Xs between the forelimb and hind limb of adjuvant arthritis rats and intervention by Notopterygh rhizoma et radix. Pharm. Biol. 2019, 57, 81–88.
|
[14] |
Bi, J.P.; Li, P.; Xu, X.X.; Wang, T.; Li, F. Anti-rheumatoid arthritic effect of volatile components in notopterygium incisum in rats via anti-inflammatory and anti-angiogenic activities. Chin. J. Nat. Med. 2018, 16, 926–935.
|
[15] |
Pan, T.; Cheng, T.F.; Jia, Y.R.; Li, P.; Li, F. Anti-rheumatoid arthritis effects of traditional Chinese herb couple in adjuvant-induced arthritis in rats. J. Ethnopharmacol. 2017, 205, 1–7.
|
[16] |
Dunn, P.M.; Zhong, Y.; Burnstock, G. P2X receptors in peripheral neurons. Prog. Neurobiol. 2001, 65, 107–134.
|
[17] |
North, R.A. P2X receptors. Phil. Trans. R. Soc. B 2016, 371, 20150427.
|
[18] |
Li, J.J.; Liu, Z.X.; Zhang, Y.L.; Xue, G.Y. P2X receptors and trigeminal neuralgia. Neuroreport. 2019, 30, 725–729.
|
[19] |
Burnstock, G.; Wood, J.N. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 1996, 6, 526–532.
|
[20] |
Fabbretti, E. P2X3 receptors are transducers of sensory signals. Brain Res. Bull. 2019, 151, 119–124.
|
[21] |
Xu, G.Y.; Huang, L.Y.M. Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J. Neurosci. 2002, 22, 93–102.
|
[22] |
Donnelly-Roberts, D.; McGaraughty, S.; Shieh, C.C.; Honore, P.; Jarvis, M.F. Painful purinergic receptors. J. Pharmacol. Exp. Ther. 2008, 324, 409–415.
|
[23] |
Jarvis, M.F.; Khakh, B.S. ATP-gated P2X cation-channels. Neuropharmacology. 2009, 56, 208–215.
|
[24] |
Wang, S.L.; Dai, Y.; Kobayashi, K.; Zhu, W.J.; Kogure, Y.; Yamanaka, H.; Wan, Y.; Zhang, W.S.; Noguchi, K. Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root Ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur. J. Neurosci. 2012, 36, 2293–2301.
|
[25] |
Gu, Y.P.; Wang, C.Y.; Li, G.W.; Huang, L.Y.M. F-actin links Epac-PKC signaling to purinergic P2X3 receptor sensitization in dorsal root Ganglia following inflammation. Mol. Pain. 2016, 12, 174480691666055.
|
[26] |
Chen, X.Q.; Wang, B.; Wu, C.B.; Pan, J.; Yuan, B.; Su, Y.Y.; Jiang, X.Y.; Zhang, X.; Bao, L. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons. Cell Res. 2012, 22, 677–696.
|
[27] |
Radstake, T.R.; van der Voort, R.; ten Brummelhuis, M.; de Waal Malefijt, M.; Looman, M.; Figdor, C.G.; van den Berg, W.B.; Barrera, P.; Adema, G.J. Increased expression of CCL18, CCL19, and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fc gamma receptors. Ann. Rheum. Dis. 2005, 64, 359–367.
|
[28] |
Abdel-Halim, M.; Darwish, S.S.; ElHady, A.K.; Hoppstädter, J.; Abadi, A.H.; Hartmann, R.W.; Kiemer, A.K.; Engel, M. Pharmacological inhibition of protein kinase C (PKC)ζ downregulates the expression of cytokines involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Eur. J. Pharm. Sci. 2016, 93, 405–409.
|
[29] |
Chovanova, L.; Vlcek, M.; Krskova, K.; Penesova, A.; Radikova, Z.; Rovensky, J.; Cholujova, D.; Sedlak, J.; Imrich, R. Increased production of IL-6 and IL-17 in lipopolysaccharide-stimulated peripheral mononuclears from patients with rheumatoid arthritis. Gen. Physiol. Biophys. 2013, 32, 395–404.
|
[30] |
Tang, C.H.; Hsu, C.J.; Yang, W.H.; Fong, Y.C. Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCδ and c-Src dependent pathways. Biochem. Pharmacol. 2010, 79, 1648–1657.
|
[31] |
Ogata, N.; Yamamoto, H.; Kugiyama, K.; Yasue, H.; Miyamoto, E. Involvement of protein kinase C in superoxide anion-induced activation of nuclear factor-κB in human endothelial cells. Cardiovasc. Res. 2000, 45, 513–521.
|
[32] |
Sun, W.X.; Liu, Y.; Zhou, W.; Li, H.W.; Yang, J.; Chen, Z.B. Shikonin inhibits TNF-α production through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model. J. Nat. Med. 2017, 71, 349–356.
|
[33] |
Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; Cohen, S.B.; Pavelka, K.; Vollenhoven, R.V.; Sharp, J.; Perez, J.L.; Spencer-Green, G.T. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006, 54, 26–37.
|
[34] |
Smolen, J.S.; Aletaha, D.; Bijlsma, J.W.; Breedveld, F.C.; Boumpas, D.; Burmester, G.; Combe, B.; Cutolo, M.; de Wit, M.; Dougados, M.; Emery, P.; Gibofsky, A.; Gomez-Reino, J.J.; Haraoui, B.; Kalden, J.; Keystone, E.C.; Kvien, T.K.; McInnes, I.; Martin-Mola, E.; Montecucco, C.; Schoels, M.; van der Heijde, D.; T2T Expert Committee. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann. Rheum. Dis. 2010, 69, 631–637.
|
[35] |
Stannus, O.; Jones, G.; Cicuttini, F.; Parameswaran, V.; Quinn, S.; Burgess, J.; Ding, C. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr. Cartil. 2010, 18, 1441–1447.
|
[36] |
Li, X.; Yuan, F.L.; Lu, W.G.; Zhao, Y.Q.; Li, C.W.; Li, J.P.; Xu, R.S. The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochem. Biophys. Res. Commun. 2010, 397, 131–135.
|
[37] |
Du, B.Y.; Zhu, M.; Li, Y.L.; Li, G.; Xi, X.Y. The prostaglandin E2 increases the production of IL-17 and the expression of costimulatory molecules on γδ T cells in rheumatoid arthritis. Scand. J. Immunol. 2020, 91, e12872.
|
[38] |
Teixeira, J.M.; Bobinski, F.; Parada, C.A.; Sluka, K.A.; Tambeli, C.H. P2X3 and P2X2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol. Neurobiol. 2017, 54, 6174–6186.
|
[39] |
Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87, 659–797.
|
[40] |
Kobayashi, K.; Fukuoka, T.; Yamanaka, H.; Dai, Y.; Obata, K.; Tokunaga, A.; Noguchi, K. Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. J. Comp. Neurol. 2005, 481, 377–390.
|
[41] |
Gao, Y.; Xu, C.S.; Liang, S.D.; Zhang, A.X.; Mu, S.N.; Wang, Y.X.; Wan, F. Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Brain Res. Bull. 2008, 77, 27–32.
|
[1] | 杨秀伟, 张友波, 徐嵬. 静脉和灌胃给予大鼠茴香酸对羟基苯乙酯的RP-HPLC法测定和药代动力学研究[J]. 中国药学(英文版), 2020, 29(11): 804-812. |
[2] | 杨秀伟*, 张鹏, 陶海燕, 蒋舜媛, 周毅. 宽叶羌活根茎和根的挥发油成分的GC-MS分析[J]. , 2006, 15(4): 200-205. |
[3] | 杨秀伟*, 张鹏, 陶海燕, 蒋舜媛, 周毅. 狭叶羌活根茎和根的挥发油成分的GC-MS分析[J]. , 2006, 15(3): 172-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||