[1] Hennell, J.R.; Lee, S.; Khoo, C.S.; Gray, M.J.; Bensoussan, A. The determination of glycyrrhizic acid in Glycyrrhiza uralensis Fisch. ex DC. (Zhi Gan Cao) root and the dried aqueous extract by LC-DAD. J. Pharm. Biomed. Anal. 2008, 47, 494-500.
[2] El-Refai, A.M.H.; Sallam, L.A.R.; El-M, M.H.A.; Amin, H.A.S. Physiological and chemical studies on the bioconversion of glycyrrhizin by Aspergillus niger NRRL595. Malays. J. Microbiol. 2012, 6, 75-82.
[3] Bombardelli, E.; Curd, S.B.; Della-Loggia, R.; Del-Negro, P.; Tubaro, A.; Gariboldi, P. Anti-inflammatory activity of 18-[beta]-glycyrrhetinic acid in Phytosome form. Fitoterapia. 1989, 60, 29-37.
[4] Akao, T. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Biol. Pharm. Bull. 2000, 23, 1418-1423.
[5] Shibata, S. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi. 2000, 120, 849-862.
[6] Farese, S.; Kruse, A.; Pasch, A.; Dick, B.; Frey, B.M.; Uehlinger, D.E.; Frey, F.J. Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int. 2009, 76, 877-884.
[7] Shi, J.H.; Xiao, J.H.; Wei, D.Z. Synthesis of biotinylated 18β-glycyrrhetinic acid and its effect on tumor cells activity. Med. Chem. Res. 2009, 18, 538-544.
[8] Kalaiarasi, P.; Kaviarasan, K.; Pugalendi, K.V. Hypolipidemic activity of 18beta-glycyrrhetinic acid on streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2009, 612, 93-97.
[9] Polizzi, K.M.; Bommarius, A.S.; Broering, J.M.; Chaparro-Riggers, J.F. Stability of biocatalysts. Curr. Opin. Chem. Biol. 2007, 11, 220-225.
[10] Bommarius, A.S.; Riebel-Bommarius, B.R. Biocatalysis: Fundamentals and Applications; (Wiley-VCH, Weinheim, Germany). 2004, 6, 611-623.
[11] Lalonde, J.; Margolin, A. Immobilization of enzymes. Enzyme Catalysis in Organic Synthesis. Weinheim, Germany: Wiley-VCH Verlag GmbH. 2002, 32, 163-184.
[12] Datta, S.; Christena, L.R.; Rajaram, Y.R. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013, 3, 1-9.
[13] Sheldon, R. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289-1307.
[14] Kubal, B.S.; D’Souza, S.F. Immobilization of catalase by entrapment of permeabilized yeast cells in hen egg white using glutaraldehyde. J. Biochem. Biophys. Methods. 2004, 59, 61-64.
[15] Rocha, C.; Gonçalves, M.P.; Teixeira, J.A. Immobilization of trypsin on spent grains for whey protein hydrolysis. Process. Biochem. 2011, 46, 505-511.
[16] Pereira, E.B.; Zanin, G.M.; Castro, H.F. Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Braz. J. Chem. Eng. 2003, 20, 343-355.
[17] Dey, G.; Nagpal, V.; Banerjee, R. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber. Appl. Biochem. Biotechnol. 2002, 102-103, 303-313.
[18] Brigida, A.I.S. Pinheiro, A.D.T. Ferreira, A.L.O. Pinto, G.A.S. Goncalves, L.R.B. Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Appl. Biochem. Biotechnol. 2007, 146, 173-187.
[19] Iqbal, M.; Saeed, A. Novel method for cell immobilization and its application for production of organic acid. Lett. Appl. Microbiol. 2005, 40, 178-182.
[20] Spizizen, J.; Kenney, J.C.; Hampil, B. Biochemical studies on the phenomenon of virus reproduction. III. The inhibition of coliphage T2r+ multiplication by sodium salicylate and sodium gentisate. J. Bacteriol. 1951, 62, 323-329.
[21] Aich, S.; Delbaere, L.T.; Chen, R. Expression and puri-fication of Escherichia coli beta-glucuronidase. Protein Expr. Purif. 2001, 22, 75-81.
[22] Guo, L.C.; Katiyo, W.; Lu, L.S.; Zhang, X.; Wang, M.M.; Yan, J.A.; Ma, X.Y.; Yang, R.J.; Zou, L.; Zhao, W. Glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG): an innovative high-potency sweetener with improved biological activities. Compr. Rev. Food Sci. Food Saf. 2018, 17, 905-919.
[23] Combie, J.; Blake, J.W.; Nugent, T.E.; Tobin, T. Morphine glucuronide hydrolysis: superiority of beta-glucuronidase from Patella vulgata. Clin. Chem. 1982, 28, 83-86.
[24] Molinspiration software. www.molinspiration.com/cgi-bin/properties.
[25] Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26.
[26] Rashid, M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg. Chem. 2020, 96, 103576.
[27] Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000, 44, 235-249.
[28] Verma, A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac. J. Trop. Biomed. 2012, 2, S1735-S1737.
[29] Husain, A.; Ahmad, A.; Khan, S.A.; Asif, M.; Bhutani, R.; Al-Abbasi, F.A. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi. Pharm. J. 2016, 24, 104-114.
[30] Iqbal, M.; Saeed, A. Entrapment of fungal hyphae in structural fibrous. Enzyme. Microb. Technol. 2006, 39, 996-1001.
[31] Cristóvão, R.O.; Tavares, A.P.M.; Brígida, A.I.; Loureiro, J.M.; Boaventura, R.A.R.; MacEdo, E.A.; Coelho, M.A.Z. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J. Mol. Catal. B Enzym. 2011, 72, 6-12.
[32] Asif, M.; Acharya, M.; Singh, A.L. In silico Physico-chemical Bioactivities and Toxicities Prediction of 3-chloro-6-arylpyridazines and 6-aryl-4,5-dihydropyridazine-3(2H)-thiones having Antitubercular Activity. Rajiv Gandhi Univ. Heal. Sci. J. Pharm. Sci. 2015, 5, 81-87. |