[1] |
Liang, S.; Meng, X.H.; Wang, Z.; Liu, J.L.; Kuang, Q.H. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-beta1/Smad2 signaling. Int. J. Biol. Macromol. 2018, 106, 947–954.
|
[2] |
González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; Trujillo, J.; Bautista, E. A review of the ephedra genus: distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 2020, 25, E3283.
|
[3] |
Kallassy, H.; Fayyad-Kazan, M.; Makki, R.; El-Makhour, Y.; Rammal, H.; Leger, D.Y.; Sol, V.; Fayyad-Kazan, H.; Liagre, B.; Badran, B. Chemical composition and antioxidant, anti-inflammatory, and antiproliferative activities of Lebanese ephedra Campylopoda plant. Med. Sci. Monit. Basic Res. 2017, 23, 313–325.
|
[4] |
Ezzatzadeh, E. Comparative evaluation of antioxidant and antimicrobial activity of crude extract and secondary metabolites isolated from Artemisia kulbadica. Asian Pac. J. Trop. Dis. 2012, 2, S431–S434.
|
[5] |
Osman, A.M. Multiple pathways of the reaction of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) with (+)-catechin: evidence for the formation of a covalent adduct between DPPH and the oxidized form of the polyphenol. Biochem. Biophys. Res. Commun. 2011, 412, 473–478.
|
[6] |
Parsaeimehr, A.; Sargsyan, E.; Javidnia, K. A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules. 2010, 15, 1668–1678.
|
[7] |
Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and antibacterial activity of roseroot (rhodiola rosea L.) dry extracts. Molecules. 2018, 23, E1767.
|
[8] |
Sist, P.; Tramer, F.; Lorenzon, P.; Urbani, R.; Vrhovsek, U.; Bernareggi, A.; Sciancalepore, M. Rhodiola rosea, a protective antioxidant for intense physical exercise: An in vitro study. J. Funct. Foods. 2018, 48, 27–36.
|
[9] |
Shao, Z.H.; Xie, J.T.; Vanden Hoek, T.L.; Mehendale, S.; Aung, H.; Li, C.Q.; Qin, Y.; Schumacker, P.T.; Becker, L.B.; Yuan, C.S. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophys. Acta. 2004, 1670, 165–171.
|
[10] |
Yu, X.; Yang, X.; Cui, B.; Wang, L.; Ren, B. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from North American ginseng. Int. J. Biol. Macromol. 2014, 65, 357–361.
|
[11] |
Xie, J.T.; Wang, C.Z.; Li, X.L.; Ni, M.; Fishbein, A.; Yuan, C.S. Anti-diabetic effect of American ginseng may not be linked to antioxidant activity: comparison between American ginseng and Scutellaria baicalensis using an ob/ob mice model. Fitoterapia. 2009, 80, 306–311.
|
[12] |
Serafini, M. The role of antioxidants in disease prevention. Medicine. 2006, 34, 533–535.
|
[13] |
Bennett, L.L.; Rojas, S.; Seefeldt, T. Role of Antioxidants in the Prevention of Cancer. J. Exp. Med. 2012, 4, 215–222.
|
[14] |
Gordon, M. Dietary antioxidants in disease prevention. Nat. Prod. Rep. 1996, 13, 265–273.
|
[15] |
Akhtar, N.; Ihsan H.; Mirza, B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018, 11, 1223–1235.
|
[16] |
María, R.; Shirley, M.; Xavier, C.; Jaime, S.; David, V.; Rosa, S.; Jodie, D. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ. Sci. 2018, 30, 500–505.
|
[17] |
Olivier, M.T.; Muganza, F.M.; Shai, L.J.; Gololo, S.S.; Nemutavhanani L.D. Phytochemical screening, antioxidant and antibacterial activities of ethanol extracts of Asparagus suaveolens aerial parts. S. Afr. J. Bot. 2017, 108, 41–46.
|
[18] |
Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147.
|
[19] |
Tonelli, A.; Candiani, A.; Sozzi, M.; Zucchelli, A.; Foresti, R.; Dall'Asta, C.; Selleri, S.; Cucinotta, A. The geek and the chemist: Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sens. Actuat. B Chem. 2019, 282, 559–566.
|
[20] |
Van der Werf, R.; Marcic, C.; Khalil, A.; Sigrist, S.; Marchioni, E. ABTS radical scavenging capacity in green and roasted coffee extracts. LWT Food Sci. Technol. 2014, 58, 77–85.
|
[21] |
Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008, 109, 227–234.
|
[22] |
Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653.
|
[23] |
Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah Univ. Sci. 2016, 10, 805–812.
|