[1] |
Ding, X.P.; Mei, W.L.; Lin, Q.; Wang, H.; Wang, J.; Peng, S.Q.; Li, H.L.; Zhu, J.H.; Li, W.; Wang, P.; Chen, H.Q.; Dong, W.H.; Guo, D.; Cai, C.H.; Huang, S.Z.; Cui, P.; Dai, H.F. Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. GigaScience. 2020, 9, 1–10.
|
[2] |
Li, W.; Chen, H.Q.; Wang, H.; Mei, W.L.; Dai, H.F. Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 2020, Doi: 10.1039/d0np0042f.
|
[3] |
Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr. J. 2011, 26, 73–87.
|
[4] |
Liao, G.; Mei, W.L.; Dong, W.H.; Li, W.; Wang, P.; Kong, F.D.; Gai, C.J.; Song, X.Q.; Dai, H.F. 2-(2-Phenylethyl)chromone derivatives in artificial agarwood from Aquilaria sinensis. Fitoterapia. 2016, 110, 38–43.
|
[5] |
Yang, L.; Yang, Y.L.; Dong, W.H.; Li, W.; Wang, P.; Cao, X.; Yuan, J.Z.; Chen, H.Q.; Mei, W.L.; Dai, H.F. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J. Enzym. Inhib. Med. Chem. 2019, 34, 853–862.
|
[6] |
Mi, C.N.; Mei, W.L.; Wang, H.; Yang, L.; Dong, W.H.; Gai, C.J.; Yuan, J.Z.; Long, W.X.; Dai, H.F. Four new guaiane sesquiterpenoids from agarwood of Aquilaria filaria. Fitoterapia. 2019, 135, 79–84.
|
[7] |
Yang, D.L.; Mei, W.L.; Zeng, Y.B.; Guo, Z.K.; Zhao, Y.X.; Wang, H.; Zuo, W.J.; Dong, W.H.; Wang, Q.H.; Dai, H.F. 2-(2-Phenylethyl)chromone derivatives in Chinese agarwood "Qi-Nan" from Aquilaria sinensis. Planta Med. 2013, 79, 1329–1334.
|
[8] |
Wang, H.N.; Mei, W.L.; Dong, W.H.; Kong, F.D.; Li, W.; Yuan, J.Z.; Dai, H.F. Two new 2-(2-Hydroxy-2-phenylethyl)chromens from agarwood originating from Aquilaria crassna. J. Asian Nat. Prod. Res. 2018, 20, 122–127.
|
[9] |
Kuang, T.D.; Chen, H.Q.; Kong, F.D.; Cai, C.H.; Yang, L.; Mei, W.L.; Dai, H.F. Three new 2-(2-phenylethyl)chromone derivatives from artificial holing agarwood of Aquilaria sinensis. Phytochem. Lett. 2018, 26, 96–100.
|
[10] |
Yu, Z.X.; Wang, C.H.; Chen, D.L.; Liu, Y.Y.; Wei, J.H. Anti-inflammatory sesquiterpenes from agarwood produced via whole-tree agarwood-inducing technique of Aquilaria sinensis. China J. Chin. Mater. Med. 2019, 44, 4196–4202.
|
[11] |
Liu, Y.Y.; Chen, D.L.; Zheng, W.; Yu, Z.X.; Wei, J.H. 2-(2-Phenylethyl) chromones and anti-inflammation of agarwood produced via whole-tree agarwood-inducing technique from Aquilaria sinensis. Nat. Prod. Res. Dev. 2018, 30, 789–794.
|
[12] |
Huo, H.X.; Zhu, Z.X.; Pang, D.R.; Li, Y.T.; Huang, Z.; Shi, S.P.; Zheng, J.; Zhang, Q.; Zhao, Y.F.; Tu, P.F.; Li, J. Anti-neuroinflammatory sesquiterpenes from Chinese eaglewood. Fitoterapia. 2015, 106, 115–121.
|
[13] |
Chen, H.Q.; Guo, F.J.; Cai, C.H.; Dong, W.H.; Wang, H.; Li, W.; Mei, W.L.; Dai, H.F. Study on sesquiterpenes from agarwood originating from Gyrinops salicifolia. China J. Chin. Mater. Med. 2019, 44, 2274–2277.
|
[14] |
Kuang, T.D.; Chen, H.Q.; Li, W.; Yang, J.L.; Zhou, L.M.; Cai, C.H.; Dong, W.H.; Mei, W.L.; Dai, H.F. A new sesquiterpene from Chinese agarwood induced by artificial holing. China J. Chin. Mater. Med. 2017, 42, 4618–4623.
|
[15] |
Kang, K.X.; Dai, H.F.; Wang, P.; Kong, F.D.; Zhou, L.M.; Dong, W.H.; Zhu, G.P.; Mei, W.L. Sesquiterpenoids of agarwood from Aquilaria crassna. Chin. Tradit. Herbal. Drugs. 2019, 50, 4863–4866.
|
[16] |
Suzuki, A.; Miyake, K.; Saito, Y.; Rasyid, F.A.; Tokuda, H.; Takeuchi, M.; Suzuki, N.; Ichiishi, E.; Fujie, T.; Goto, M.; Sasaki, Y.; Nakagawa-Goto, K. Phenylethylchromones with in vitro antitumor promoting activity from Aquilaria filaria. Planta Med. 2017, 83, 300–305.
|
[17] |
Dai, H.F.; Mei, W.L. Technology of agarwood trees cultivation and agarwood artificial formation. Beijing: China Agriculture Press. 2015, 16–19.
|
[18] |
Li, W.H.; Chang, S.T.; Chang, S.C.; Chang, H.T. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat. Prod. Res. 2008, 22, 1085–1093.
|
[19] |
Zhao, Y.X.; Li, C.S.; Luo, X.D.; Tie, M.; Zhou, J. Steroids from pliocene fossil Pinus armandii. Chin. J. Org. Chem. 2005, 25, 1100–1102,1010.
|
[20] |
Gan, K.H.; Kuo, S.H.; Lin, C.N. Steroidal Constituents of Ganoderma applanatum and Ganoderma neo-japonicum. J. Nat. Prod. 1998, 61, 1421–1422.
|
[21] |
Woo, W.S.; Choi, J.S.; Chang, H.S. Phytochemical study on Melandrium firmum. Arch. Pharmacal Res. 1985, 8, 133–137.
|
[22] |
Luo, J.G.; Zhang, J.; Kong, L.Y. Studies on triterpenoids of Gypsophila oldhamiana. China J. Chin. Mater. Med. 2006, 31, 1640–1641.
|
[23] |
Shiojima, K.; Suzuki, M.; Matsumura, T.; Ageta, H. Fern constituent: a new triterpenoid hydrocarbon, trisnorhopane, isolated from the leaves of Dryopteris crassirhizoma and Gleichenia japonica. Chem. Pharm. Bull. 1994, 42, 377–378.
|
[24] |
Fotie, J.; Bohle, D.S.; Leimanis, M.L.; Georges, E.; Rukunga, G.; Nkengfack, A.E. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J. Nat. Prod. 2006, 69, 62–67.
|
[25] |
Zhou, W.W.; Guo, S.X. Components of the sclerotia of Polyporus umbellatus. Chem. Nat. Compd. 2009, 45, 124–125.
|
[26] |
Liu, X.P. Ph. D. Chemical constituents from the acrial part of Ceriops tagal, Hainan. Jinan University. 2016.
|
[27] |
Yang, H.; Suh, D.Y.; Han, B. Isolation and characterization of platelet-activating factor receptor binding antagonists from Biota orientali. Planta Med. 1995, 61, 37–40.
|
[28] |
Zhang, P.M.; Zhang, C.; Zeng, K.W.; Jian, Y.; Tu, P.F. Lignans and flavonoids from Artemisia brachyloba. J. Chin. Pharm. Sci. 2018, 27, 429–435.
|
[29] |
Tian, S.Z.; Pu, X.; Luo, G.Y.; Zhao, L.X.; Xu, L.H.; Li, W.J.; Luo, Y.G. Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J. Agric. Food Chem. 2013, 61, 3006–3012.
|
[30] |
Elbanna, A.H.; Khalil, Z.G.; Bernhardt, P.V.; Capon, R.J. Scopularides revisited: molecular networking guided exploration of Lipodepsipeptides in Australian marine fish gastrointestinal tract-derived Fungi. Mar. Drugs. 2019, 17, 475−491.
|
[31] |
Qu, Y.; Liu, C.; Ren, X.Y.; Zhang, Y.Y. Chemical constituents from the tuber of Curcuma longa. J. Chin. Pharm. Univ. 2013, 14, 207–209.
|
[32] |
Li, W.; Mei, W.L.; Zuo, W.J.; Cai, C.H.; Dong, W.H., Dai, H.F. Chemical constituents of Chinese agarwood induced by artificial holing. J. Trop. Subtrop. Bot. 2016, 24, 342–347.
|
[33] |
Sy, L.K.; Brown, G.D. Coniferaldehyde derivatives from tissue culture of Artemisia annua and Tanacetum parthenium. Phytochemistry. 1999, 50, 781–785.
|
[34] |
Pardede, A.; Adfa, M.; Juliari Kusnanda, A.; Ninomiya, M.; Koketsu, M. Flavonoid rutinosides from Cinnamomum parthenoxylon leaves and their hepatoprotective and antioxidant activity. Med. Chem. Res. 2017, 26, 2074–2079.
|
[35] |
Junior, P. Acetophenonglucoside aus Penstemon pinifolius. Planta Med. 1986, 52, 218–220.
|
[36] |
Deng, L.N.; Li, B.R.; Wang, G.W.; Zhang, J.M.; Ge, J.Q.; Wang, H.; Liao, Z.H.; Chen, M. Chemical constituents from roots of Rumex nepalensis. Chin. Tradit. Herbal. Drugs. 2016, 47, 2095–2099.
|
[37] |
Xu, R.S.; Lin, W.H.; Han, J.; Wang, W.L.; Zhao, S.H. Studies on the chemical constituents of Melia azedarach. J. Chin. Pharm. Sci. 1992, 2, 7–11.
|
[38] |
Miao, S.; Man, Y.Q.; Zhou, X.L.; Yang, L.J.; Gong, K.K. Chemical constituents from mangrove plant Sonneratia paracaseolaris. Chin. Tradit. Herbal. Drugs. 2018, 49, 1025–1030.
|
[39] |
Wang, W.; Yang, C.R.; Zhang, Y.J. Phenolic constituents from the fruits of Amomum tsao-ko (Zingiberaceae). Acta Bot. Yunnanica. 2009, 31, 284–288.
|
[40] |
Luo, Y.P.; Zhao, X.T.; Wang, L.; Yang, X.D.; Zhao, J.F.; Li, L. Studies on the chemical constituents from the barks of Litsea rubescens. Chin. Tradit. Herbal. Drugs. 2010, 41, 1258–1260.
|
[41] |
Dong, L.; Chen, M.; Li, M.; Liao, Z.H.; Sun, M. A new cyanosides from Rhodiola bupleuroldes. Acta Pharm. Sin. 2009, 44, 1383–386.
|
[42] |
Yang, J.S.; Wang, Y.L.; Su, Y.L.; He, C.H.; Zheng, Q.T.; Yang, J. Studies on chemical constituents of Aquilaria sinensis (Lour) Gilg. III. Acta Pharm. Sin. 1989, 24, 264–268.
|
[43] |
Lin, L.D.; Qi, S.Y. Triterpenoid from Chinese eaglewood (Aquilaria sinensis). Chin. Trad. Herb. Drugs. 2000, 31, 89–90.
|
[44] |
Mei, W.L.; Zeng, Y.B.; Wu, J.; Cui, H.B.; Dai, H.F. Chemical composition and anti-MRSA activity of the essential from Chinese eaglewood. J. Chin. Pharm. Sci. 2008, 17, 225–229.
|
[45] |
Meier, M.; Kohlenberg, B.; Braun, N.A. Isolation of anisyl acetone from agarwood oil. J. Essent. Oil Res. 2003, 15, 54–56.
|
[46] |
Zhang, X.; Tao, M.H.; Chen, Y.C.; Gao, X.X.; Tan, Y.Z.; Zhang, W.M. Five cucurbitancins from Aquilaria sinensis peels and their cytotoxic activities. Nat. Prod. Res. Dev. 2014, 26, 354–357.
|
[47] |
Feng, J.; Yang, X.W. Liposolubility constituents from leaves of Aquilaria sinensis. China J. Chin. Mater. Med. 2011, 36, 2092–2095.
|
[48] |
Yuan, H.W.; Zhao, J.P.; Liu, Y.B.; Qiu, Y.X.; Xie, Q.L.; Li, M.J.; Khan, I.A.; Wang, W. Advance in studies on chemical constituents, pharmacology and quality control of Aquilaria sinensis. Digit. Chin. Med. 2018, 1, 316–330.
|