中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (5): 333-350.DOI: 10.5246/jcps.2023.05.029
• 【综述】 • 下一篇
收稿日期:
2022-09-24
修回日期:
2022-10-15
接受日期:
2022-11-23
出版日期:
2023-06-02
发布日期:
2023-06-02
通讯作者:
张可锋, 蔡小华
作者简介:
基金资助:
Suqian Cai1, Kefeng Zhang1,*(), Xiaohua Cai2,*()
Received:
2022-09-24
Revised:
2022-10-15
Accepted:
2022-11-23
Online:
2023-06-02
Published:
2023-06-02
Contact:
Kefeng Zhang, Xiaohua Cai
摘要:
岩白菜素是中药岩白菜的主要生物活性成分和许多植物家族的重要成分或次级代谢产物, 岩白菜素及其衍生物因其独特的生物活性和药理性质引起了人们的极大兴趣。在过去的几十年中, 大量岩白菜素衍生物合成出来并考察其生物活性, 取得了许多积极的结果。这些研究有助于从岩白菜素衍生物中发现和鉴定新的候选药物治疗剂, 了解它们的分子靶点和药理作用机制。本工作总结了岩白菜素半合成衍生物的零散信息及在生物活性修饰方面的最新进展。
Supporting:
蔡粟茜, 张可锋, 蔡小华. 岩白菜素: 一种通用易得的生物活性修饰前体[J]. 中国药学(英文版), 2023, 32(5): 333-350.
Suqian Cai, Kefeng Zhang, Xiaohua Cai. Bergenin: a versatile and readily available precursor for bioactive modifications[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 333-350.
[1] |
Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod. 2011, 74, 496–511.
|
[2] |
Ramana, K.V.; Singhal, S.S.; Reddy, A.B. Therapeutic potential of natural pharmacological agents in the treatment of human diseases. Biomed. Res. Int. 2014, 2014, 573452.
|
[3] |
Aggarwal, D.; Gautam, D.; Sharma, M.; Singla, S.K. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur. J. Pharmacol. 2016, 791, 611–621.
|
[4] |
Cragg, G. M.; Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013, 1830, 3670–3695.
|
[5] |
Khare, C.P. editor. Indian medicinal plants: an illustrative dictionary. Heidelberg: Springer-Verlag Berlin. 2007.
|
[6] |
Lu X, Wang J. Advances in the study of Bergenia plants. J. Chin. Med. Mater. 2003, 26, 58–60.
|
[7] |
Rastogi, S.; Rawat, A. A comprehensive review on bergenin, a potential hepatoprotective and antioxidative phytoconstituent. Herba Pol. 2008, 54, 66–78.
|
[8] |
Shi, X.Y.; Xu, M.M.; Luo, K.; Huang, W.J.; Yu, H.W.; Zhou, T.C. Anticancer activity of bergenin against cervical cancer cells involves apoptosis, cell cycle arrest, inhibition of cell migration and the STAT3 signalling pathway. Exp. Ther. Med. 2019, 17, 3525–3529.
|
[9] |
Bajracharya, G.B. Diversity, pharmacology and synthesis of bergenin and its derivatives: potential materials for therapeutic usages. Fitoterapia. 2015, 101, 133–152.
|
[10] |
Patel, D.; Patel, K.; Kumar, R.; Gadewar, M.; Tahilyani, V. Pharmacological and analytical aspects of bergenin: a concise report. Asian Pac. J. Trop. Dis. 2012, 2, 163–167.
|
[11] |
Chauhan, R.; Dwivedi, J. Secondary metabolites found in bergenia species: a compendious review. Int. J. Pharm. Pharm. Sci. 2013, 5, 9–16.
|
[12] |
Chauhan, R. Berginia ciliata mine of medicinal properties: a review. Int. J. Pharm. Sci. Rev. Res. 2012, 15, 20–23.
|
[13] |
Sharma, J.; Varma, R. A review on endangered plant of mallotus philippensis (lam.) M. Arg. Pharmacologyonline. 2011, 3, 1256–1265.
|
[14] |
Ruby, K.; Chauhan, R.; Sharma, S.; Dwivedi, J. Polypharmacological activities of Bergenia species. Int. J. Pharm. Sci. Rev. Res. 2012, 13, 100–110.
|
[15] |
Chauhan, R.; Saini, R.; Dwivedi, J. Himalayan bergenia A comprehensive review. Int. J. Pharm. Sci. Rev. Res. 2012, 14, 139–141.
|
[16] |
Kobayashi, H.; de Mejía, E. The genus Ardisia: a novel source of health-promoting compounds and phytopharmaceuticals. J. Ethnopharmacol. 2005, 96, 347–354.
|
[17] |
Singh, N.; Gupta, A.K.; Juyal, V. A review on bergenia ligulata wall. Int. J. Chem. Anal. Sci. 2010, 1, 71–73.
|
[18] |
Zhang, Y.S.; Liao, C.M.; Xiaohong, L.J.L.; Fang, S.M.; Li, Y.X.; He, D.W. Biological advances in Bergenia genus plant. Afr. J. Biotechnol. 2011, 10, 8166–8169.
|
[19] |
Lim, H.K.; Kim, H.S.; Kim, S.H.; Chang, M.J.; Rhee, G.S.; Choi, J. Protective effects of acetylbergenin against carbon tetrachloride-induced hepatotoxicity in rats. Arch. Pharm. Res. 2001, 24, 114–118.
|
[20] |
Xia, Y.J.; Li, J.J.; Chen, K.; Feng, J.; Guo, C.Y. Bergenin attenuates hepatic fibrosis by regulating autophagy mediated by the PPAR-γ/TGF-β pathway. PPAR Res. 2020, 2020, 6694214.
|
[21] |
Xiang, S.H.; Chen, K.; Xu, L.; Wang, T.; Guo, C.Y. Bergenin exerts hepatoprotective effects by inhibiting the release of inflammatory factors, apoptosis and autophagy via the PPAR-γ pathway. Drug Des. Devel. Ther. 2020, 14, 129–143.
|
[22] |
Yollada, S.; Waranya, C.; Kanokwan, J. Bergenin exhibits hepatoprotective activity against ethanol-induced oxidative stress in ICR mice. Curr. Top. Nutraceutical. Res. 2020, 18, 297–302.
|
[23] |
Sriset, Y.; Chatuphonprasert, W.; Jarukamjorn, K. Hepatoprotective activity of bergenin against xenobiotics-induced oxidative stress in human hepatoma (HepG2) cells. Chiang Mai Univ. J. Nat. Sci. 2020, 20, e2021011.
|
[24] |
Dong, G.; Zhou, Y.; Song, X.L. In vitro inhibitory effects of bergenin on human liver cytochrome P450 enzymes. Pharm. Biol. 2018, 56, 620–625.
|
[25] |
Nakamura, K.; Zhang, M.; Kageyama, S.; Ke, B.B.; Fujii, T.; Sosa, R.A.; Reed, E.F.; Datta, N.; Zarrinpar, A.; Busuttil, R.W.; Araujo, J.A.; Kupiec-Weglinski, J.W. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury. J. Hepatol. 2017, 67, 1232–1242.
|
[26] |
Barai, P.; Raval, N.; Acharya, S.; Borisa, A.; Bhatt, H.; Acharya, N. Neuroprotective effects of bergenin in Alzheimer’s disease: investigation through molecular docking, in vitro and in vivo studies. Behav. Brain Res. 2019, 356, 18–40.
|
[27] |
Singh, J.; Kumar, A.; Sharma, A. Antianxiety activity guided isolation and characterization of bergenin from Caesalpinia digyna Rottler roots. J. Ethnopharmacol. 2017, 195, 182–187.
|
[28] |
Shukry, M.; Hafez, A.; Ghazy, E.; Farrag, F.; Abumandour, M. Bergenin Ameliorates Glutamate-Induced Death of Hippocampal Neuronal Cells through Modulation of the Antioxidant Activity and reducing the redox oxygen Species Creation. Alex. J. Vet. Sci. 2019, 62, 79.
|
[29] |
Ji, Y.F.; Wang, D.; Zhang, B.A.; Lu, H. Bergenin ameliorates MPTP-induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J. Alzheimers Dis. 2019, 72, 823–833.
|
[30] |
Sriset, Y.; Nakorn, S. N.; Chitsaitarn, S.; Dechsri, K.; Chatuphonprasert, W.; Jarukamjorn, K. Bergenin exhibits a nephroprotective effect by improvement of the antioxidant system in xenobiotic-induced oxidative stress in ICR mice. Int. J. Pharm. Phytopharmacol. Res. 2020, 10, 13–21.
|
[31] |
Villarreal, C.F.; Santos, D.S.; Lauria, P.S.S.; Gama, K.B.; Espírito-Santo, R.F.; Juiz, P.J.L.; Alves, C.Q.; David, J.M.; Soares, M.B.P. Bergenin reduces experimental painful diabetic neuropathy by restoring redox and immune homeostasis in the nervous system. Int. J. Mol. Sci. 2020, 21, E4850.
|
[32] |
Gao, X.J.; Guo, M.Y.; Zhang, Z.C.; Wang, T.C.; Cao, Y.G.; Zhang, N.S. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis. Inflammation. 2015, 38, 1142–1150.
|
[33] |
Oliveira, G.A.; Araujo, A.K.; Pacheco, G.; Oliveira, A.P.; Carvalho, J.L.; Chaves, L.S.; Medeiros, J.V.R. Anti-inflammatory properties of bergenin in mice. J. Appl. Pharm. Sci. 2019, 9, 69–77.
|
[34] |
Lopes de Oliveira, G.A.; Alarcón de la Lastra, C.; Rosillo, M.Á.; Castejon Martinez, M.L.; Sánchez-Hidalgo, M.; Rolim Medeiros, J.V.; Villegas, I. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem. Biol. Interact. 2019, 297, 25–33.
|
[35] |
Lin, H.; Wang, P.F.; Zhang, W.H.; Yan, H.W.; Yu, H.X.; Yan, L.Q.; Chen, H.; Xie, M.D.; Shan, L.Q. Novel combined preparation and investigation of bergenin-loaded albumin nanoparticles for the treatment of acute lung injury: In vitro and In vivo evaluations. Inflammation. 2022, 45, 428–444.
|
[36] |
Tang, Q.H.; Wang, Q.Y.; Sun, Z.J.; Kang, S.Y.; Fan, Y.M.; Hao, Z.H. Bergenin monohydrate attenuates inflammatory response via MAPK and NF-κB pathways against Klebsiella pneumonia infection. Front. Pharmacol. 2021, 12, 651664.
|
[37] |
Wang, K.; Li, Y.F.; Lv, Q.; Li, X.M.; Dai, Y.; Wei, Z.F. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Front. Pharmacol. 2018, 8, 981.
|
[38] |
Chen, M.; Chen, C.F.; Gao, Y.; Li, D.M.; Huang, D.; Chen, Z.Y.; Zhao, X.N.; Huang, Q.; Wu, D.; Lai, T.W.; Su, G.M.; Wu, B.; Zhou, B.X. Bergenin-activated SIRT1 inhibits TNF-α-induced proinflammatory response by blocking the NF-κB signaling pathway. Pulm. Pharmacol. Ther. 2020, 62, 101921.
|
[39] |
Srinivasan, R.; Chandrasekar, M.J.N.; Nanjan, M.J.; Suresh, B. Antioxidant activity of Caesalpinia digyna root. J. Ethnopharmacol. 2007, 113, 284–291.
|
[40] |
Muniz, M.; Nunomura, S.; Nunomura, R.; Lima, E.; de Almeida, P.; Lima, A. Quantification of bergenin, antioxidant activity and nitric oxide inhibition from bark, leaf and twig of endopleura uchi. Quim. Nova. 2020, 43, 413–418.
|
[41] |
Sadat, A.; Uddin, G.; Alam, M.; Ahmad, A.; Siddiqui, B.S. Structure activity relationship of bergenin, p-hydroxybenzoyl bergenin, 11-O-galloylbergenin as potent antioxidant and urease inhibitor isolated from Bergenia ligulata. Nat. Prod. Res. 2015, 29, 2291–2294.
|
[42] |
Sriset, Y.; Chatuphonprasert, W.; Jarukamjorn, K. In vitro antioxidant potential of Mallotus repandus (Willd.) Muell. Arg stem extract and its active constituent bergenin. Songklanakarin J. Sci. Technol. 2021, 43, 24–30.
|
[43] |
Uddin, G.; Sadat, A.; Siddiqui, B.S. Comparative antioxidant and antiplasmodial activities of 11-O-galloylbergenin and bergenin isolated from Bergenia ligulata. Trop. Biomed. 2014, 31, 143–148.
|
[44] |
Qi, Q.C.; Dong, Z.H.; Sun, Y.Y.; Li, S.Y.; Zhao, Z.X. Protective effect of bergenin against cyclophosphamide-induced immunosuppression by immunomodulatory effect and antioxidation in balb/c mice. Molecules. 2018, 23, 2668.
|
[45] |
Nazir, N.; Koul, S.; Qurishi, M.A.; Taneja, S.C.; Ahmad, S.F.; Bani, S.R.; Qazi, G.N. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis—a flow cytometric study. J. Ethnopharmacol. 2007, 112, 401–405.
|
[46] |
Dwivedi, V.P.; Bhattacharya, D.; Yadav, V.; Singh, D.K.; Kumar, S.; Singh, M.; Ojha, D.; Ranganathan, A.; Van Kaer, L.; Chattopadhyay, D.; Das, G. The phytochemical bergenin enhances T helper 1 responses and anti-mycobacterial immunity by activating the MAP kinase pathway in macrophages. Front. Cell Infect. Microbiol. 2017, 7, 149.
|
[47] |
Kumar, S.; Sharma, C.; Kaushik, S.R.; Kulshreshtha, A.; Chaturvedi, S.; Nanda, R.K.; Bhaskar, A.; Chattopadhyay, D.; Das, G.; Dwivedi, V.P. The phytochemical bergenin as an adjunct immunotherapy for tuberculosis in mice. J. Biol. Chem. 2019, 294, 8555–8563.
|
[48] |
Ambika, S.; Saravanan, R. Effect of bergenin on hepatic glucose metabolism and insulin signaling in C57BL/6J mice with high fat-diet induced type 2 diabetes. J. Appl. Biomed. 2016, 14, 221–227.
|
[49] |
Rajput, S.A.; Mirza, M.R.; Choudhary, M.I. Bergenin protects pancreatic beta cells against cytokine-induced apoptosis in INS-1E cells. PLoS One. 2020, 15, e0241349.
|
[50] |
Qiao, S.M.; Liu, R.; Lv, C.J.; Miao, Y.M.; Yue, M.F.; Tao, Y.; Wei, Z.F.; Xia, Y.F.; Dai, Y. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway. Free. Radic. Biol. Med. 2019, 145, 118–135.
|
[51] |
Sanjeev, S.; Murthy, M.K.; Devi, M.S.; Khushboo, M.; Renthlei, Z.; Ibrahim, K.S.; Kumar, N.S.; Roy, V.K.; Gurusubramanian, G. Isolation, characterization, and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. Environ Sci. Pollut Res. 2019, 26, 7082–7101.
|
[52] |
Riris, I.D.; Napitupulu, M.A. Antidiabetic activity of methoxy bergenin isolated from ethanol extract of raru stem bark (vatica pauciflora blume) in alloxan induced diabetic wistar rats. Asian J. Chem. 2017, 29, 870–874.
|
[53] |
Gao, X.C.; Wang, Y.Z.; Zhang, J.Z.; Lin, L.F.; Yao, Q.; Xiang, G.A. Bergenin suppresses the growth of colorectal cancer cells by inhibiting PI3K/AKT/mTOR signaling pathway. Trop. J. Pharm. Res. 2017, 16, 2307–2313.
|
[54] |
Bulugahapitiya, V.P.; Munasinghe, M.M.A.B.; Hettihewa, L.M.; Kihara, N. Anti-cancer activity of Fluggea leucopyrus willd (Katupila) against human ovarian carcinoma and characterization of active compounds. J. Sci. 2020, 11, 12.
|
[55] |
Zhang, J.; Nishimoto, Y.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kitdamrongtham, W.; Akazawa, H.; Manosroi, A.; Manosroi, J.; Akihisa, T. Cancer chemopreventive effect of bergenin from Peltophorum pterocarpum wood. Chem. Biodivers. 2013, 10, 1866–1875.
|
[56] |
Nyemb, J.N.; Djankou, M.T.; Talla, E.; Tchinda, A.T.; Ngoudjou, D.T.; Iqbal, J.; Mbafor, J.T. Antimicrobial, α-glucosidase and alkaline phosphatase inhibitory activities of bergenin, the major constituent of cissus populnea roots. Med. Chem. 2018, 8, 215–219.
|
[57] |
Liu, J.J.; Zhang, Y.X.; Yu, C.H.; Zhang, P.Y.; Gu, S.Y.; Wang, G.; Xiao, H.L.; Li, S.B. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev. Res. 2021, 82, 278–286.
|
[58] |
Shi, X.Y.; Xu, M.M.; Luo, K.; Huang, W.J.; Yu, H.W.; Zhou, T.C. Anticancer activity of bergenin against cervical cancer cells involves apoptosis, cell cycle arrest, inhibition of cell migration and the STAT3 signalling pathway. Exp. Ther. Med. 2019, 17, 3525–3529.
|
[59] |
Bessong, P.O.; Obi, C.L.; Andréola, M.L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.M.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91.
|
[60] |
Rajbhandari, M.; Lalk, M.; Mentel, R.; Lindequist, U. SHORT REPORT antiviral activity and constituents of the Nepalese medicinal plant astilbe rivularis. Rec. Nat. Prod. 2011, 5, 138–142.
|
[61] |
Patel, R.S.; Vanzara, A.G.; Patel, N.R.; Vasava, A.M.; Patil, S.M.; Rajput, K.S. In-silico discovery of fungal metabolites bergenin, quercitrin and dihydroartemisinin as potential inhibitors against main protease of SARSCoV-2. Coronaviruses. 2021, 2, e260721189437.
|
[62] |
Ahmed, S.; Tasleem, F.; Azhar, I. Antiemetic activity of bergenin from peltophorum roxburghii L. Indo Am. J. Pharm. Res. 2015, 5, 760–764.
|
[63] |
Khan, H.; Amin, H.; Ullah, A.; Saba, S.; Rafique, J.; Khan, K.; Ahmad, N.; Badshah, S.L. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from mallotus philippensis. Oxid. Med. Cell Longev. 2016, 2016, 1051925.
|
[64] |
Liang, J.; Li, Y.H.; Liu, X.W.; Huang, Y.X.; Shen, Y.; Wang, J.; Liu, Z.X.; Zhao, Y. In vivo and in vitro antimalarial activity of bergenin. Biomed. Rep. 2014, 2, 260–264.
|
[65] |
Mandira, T.G. Anti-angiogenic property of bergenin in chicken chorioallantoic membrane. Eur. J. Mol. Clin. Med. 2021, 8, 2217–2229.
|
[66] |
Raj, M.K.; Duraipandiyan, V.; Agustin, P.; Ignacimuthu, S. Antimicrobial activity of bergenin isolated from Peltophorum pterocarpum DC. flowers. Asian Pac. J. Trop. Biomed. 2012, 2, S901–S904.
|
[67] |
Chen, M.; Ye, C.Y.; Zhu, J.N.; Zhang, P.Y.; Jiang, Y.J.; Lu, X.Y.; Wu, H.X. Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia. Front. Cell Dev. Biol. 2020, 8, 703.
|
[68] |
Lu, J.; Dalbeth, N.; Yin, H.Y.; Li, C.G.; Merriman, T.R.; Wei, W.H. Mouse models for human hyperuricaemia: a critical review. Nat. Rev. Rheumatol. 2019, 15, 413–426.
|
[69] |
Nakatochi, M.; Kanai, M.; Nakayama, A.; Hishida, A.; Kawamura, Y.; Ichihara, S.; Akiyama, M.; Ikezaki, H.; Furusyo, N.; Shimizu, S.; Yamamoto, K.; Hirata, M.; Okada, R.; Kawai, S.; Kawaguchi, M.; Nishida, Y.; Shimanoe, C.; Ibusuki, R.; Takezaki, T.; Nakajima, M.; Takao, M.; Ozaki, E.; Matsui, D.; Nishiyama, T.; Suzuki, S.; Takashima, N.; Kita, Y.; Endoh, K.; Kuriki, K.; Uemura, H.; Arisawa, K.; Oze, I.; Matsuo, K.; Nakamura, Y.; Mikami, H.; Tamura, T.; Nakashima, H.; Nakamura, T.; Kato, N.; Matsuda, K.; Murakami, Y.; Matsubara, T.; Naito, M.; Kubo, M.; Kamatani, Y.; Shinomiya, N.; Yokota, M.; Wakai, K.J.; Okada, Y.; Matsuo, H. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun. Biol. 2019, 2, 115.
|
[70] |
Aggarwal, D.; Gautam, D.; Sharma, M.; Singla, S.K. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur. J. Pharmacol. 2016, 791, 611–621.
|
[71] |
Arfan, M.; Amin, H.; Khan, I.; Shah, M.R.; Shah, H.; Khan, A.Z.; Halimi, S.M.A.; Khan, N.; Kaleem, W.A.; Qayum, M.; Shahidullah, A.; Khan, M.A. Molecular simulations of bergenin as a new urease inhibitor. Med. Chem. Res. 2012, 21, 2454–2457.
|
[72] |
Lee, K.H.; Choi, E.M. Effects of bergenin on methylglyoxal-induced damage in osteoblastic MC3T3-E1 cells. J. Appl. Toxicol. 2018, 38, 585–593.
|
[73] |
Suh, K.S.; Chon, S.; Jung, W.W.; Choi, E.M. Effect of bergenin on RANKL-induced osteoclast differentiation in the presence of methylglyoxal. Toxicol. Vitro. 2019, 61, 104613.
|
[74] |
Suh, K.S.; Chon, S.; Choi, E.M. Bergenin increases osteogenic differentiation and prevents methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblasts. Cytotechnology. 2018, 70, 215–224.
|
[75] |
Hou, W.D.; Ye, C.Y.; Chen, M.; Li, W.X.; Gao, X.; He, R.X.; Zheng, Q.; Zhang, W. Bergenin activates SIRT1 as a novel therapeutic agent for osteogenesis of bone mesenchymal stem cells. Front. Pharmacol. 2019, 10, 618.
|
[76] |
Zhang, G.F.; Wang, H.; Zhang, Q.X.; Zhao, Z.Y.; Zhu, W.Y.; Zuo, X.H. Bergenin alleviates H2O2-induced oxidative stress and apoptosis in nucleus pulposus cells: involvement of the PPAR-γ/NF-κB pathway. Environ. Toxicol. 2021, doi.org/10.1002/tox.23368.
|
[77] |
Yang, L.; Zheng, Y.; Miao, Y.M.; Yan, W.X.; Geng, Y.Z.; Dai, Y.; Wei, Z.F. Bergenin, a PPARγ agonist, inhibits Th17 differentiation and subsequent neutrophilic asthma by preventing GLS1-dependent glutaminolysis. Acta Pharmacol. Sin. 2022, 43, 963–976.
|
[78] |
Costa, R.A.; da Silva, J.N.; Oliveira, V.G.; Anselmo, L.M.; Araújo, M.M.; Oliveira, K.M.T.; Nunomura, R.D.C.S. New insights into structural, electronic, reactivity, spectroscopic and pharmacological properties of Bergenin: experimental, DFT calculations, MD and docking simulations. J. Mol. Liq. 2021, 330, 115625.
|
[79] |
Jayakody, R.S.; Wijewardhane, P.; Herath, C.; Perera, S. Bergenin: a computationally proven promising scaffold for novel galectin-3 inhibitors. J. Mol. Model. 2018, 24, 302.
|
[80] |
Bajracharya, G.B. Diversity, pharmacology and synthesis of bergenin and its derivatives: potential materials for therapeutic usages. Fitoterapia. 2015, 101, 133–152.
|
[81] |
Madaan, R.; Singla, R.K.; Kumar, S.; Dubey, A.K.; Kumar, D.; Sharma, P.; Bala, R.; Singla, S.; Shen, B. Bergenin - A biologically active scaffold: nanotechnological perspectives. Curr. Top Med. Chem. 2022, 22, 132–149.
|
[82] |
Frick, W.; Schmidt, R.R. Synthesis of bergenin-type C-glucosylarenes. Carbohydr. Res. 1991, 209, 101–107.
|
[83] |
Rousseau, C.; Martin, O.R. Synthesis of bergenin-related natural products by way of an intramolecular C-glycosylation reaction. Tetrahedron Asymmetry. 2000, 11, 409–412.
|
[84] |
Herzner, H.; Palmacci, E.R.; Seeberger, P.H. Short total synthesis of 8,10-di-O-methylbergenin. Org. Lett. 2002, 4, 2965–2967.
|
[85] |
Sakamaki, S.; Kawanishi, E.; Nomura, S.; Ishikawa, T. Aryl-β-C-glucosidation using glucal boronate: application to the synthesis of tri-O-methylnorbergenin. Tetrahedron. 2012, 68, 5744–5753.
|
[86] |
Parkan, K.; Pohl, R.; Kotora, M. Cross-coupling reaction of saccharide-based alkenyl boronic acids with aryl halides: the synthesis of bergenin. Chemistry. 2014, 20, 4414–4419.
|
[87] |
Shah, M.R.; Arfan, M.; Amin, H.; Hussain, Z.; Qadir, M.I.; Iqbal Choudhary, M.; VanDerveer, D.; Ahmed Mesaik, M.; Soomro, S.; Jabeen, A.; Khan, I.U. Synthesis of new bergenin derivatives as potent inhibitors of inflammatory mediators NO and TNF-Α. Bioorg. Med. Chem. Lett. 2012, 22, 2744–2747.
|
[88] |
Wang, C.; Zhu, J.J.; Zheng, X.J.; Ye, J.; Ye, X.S. Anti-leukemia activities and mechanisms of bergenin derivative D-23. Chin. Pharm. J. 2018, 53, 1638–1644.
|
[89] |
da Silva Neto, O.; Teodoro, M.; do Nascimento, B.; Cardoso, K.; Silva, E.; David, J.; David, J. Bergenin of peltophorum dubium (Fabaceae) roots and its bioactive semi‑synthetic derivatives. J. Braz. Chem. Soc. 2020, 31, 2644–2650.
|
[90] |
Qu, W.; Zhang, D.P.; Hong, F.; Yan, D.B.; Ye, F.; Xie, Y.; Zhang, Z.T. Bergenin derivatives, and preparation method and application thereof. CN105037382A.
|
[91] |
Pavan Kumar, P.; Siva, B.; Venkateswara Rao, B.; Dileep Kumar, G.; Lakshma Nayak, V.; Nishant Jain, S.; Tiwari, A.K.; Purushotham, U.; Venkata Rao, C.; Suresh Babu, K. Synthesis and biological evaluation of bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents. Bioorg. Chem. 2019, 91, 103161.
|
[92] |
Mao, Z.W.; Wan, C.P.; Jiang, Y.; Rao, G.X. Synthesis and anti-tumor activity of bergenin analogs. Chem. Reag. 2014, 36, 689–692.
|
[93] |
Deng, L.H.; Song, C.C.; Niu, Y.H.; Li, Q.; Wang, M.; Wu, Y.F.; Ye, X.S. Synthesis and biological evaluation of bergenin derivatives as new immunosuppressants. RSC Med. Chem. 2021, 12, 1968–1976.
|
[94] |
Jung, J.C.; Lim, E.; Kim, S.H.; Kim, N.S.; Jung, M.; Oh, S. Practical synthesis and biological evaluation of bergenin analogs. Chem. Biol. Drug Des. 2011, 78, 725–729.
|
[95] |
Yan, D.B.; Zhang, D.P.; Li, M.; Liu, W.Y.; Feng, F.; Di, B.; Guo, Q.L.; Xie, N. Synthesis and cytotoxic activity of 3,4,11-trihydroxyl modified derivatives of bergenin. Chin. J. Nat. Med. 2014, 12, 929–936.
|
[96] |
Kashima, Y.; Miyazawa, M. Synthesis and biological evaluation of bergenin analogues as mushroom tyrosinase inhibitors. Arch. Pharm. Res. 2012, 35, 1533–1541.
|
[97] |
Liang, C.Y.; Pei, S.M.; Ju, W.H.; Jia, M.Y.; Tian, D.N.; Tang, Y.H.; Mao, G.N. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids. Eur. J. Med. Chem. 2017, 133, 319–328.
|
[98] |
El-Hawary, S.S.; Mohammed, R.; AbouZid, S.; Zaki, M.A.; Ali, Z.Y.; Elwekeel, A.; Elshemy, H.A.H. Antitrypanosomal activity of new semi-synthetic bergenin derivatives. Chem. Biol. Drug Des. 2022, 99, 179–186.
|
[99] |
Liu, N.N.; Bao, F.K.; Chen, J.B.; Zeng, X.H.; Chi, S.J.; Liu, J.P. Synthesis and cytotoxic activities of novel bergenin derivatives. Med. Chem. Res. 2014, 23, 4803–4813.
|
[100] |
Li, J.R.; Wang, M.D.; Liu, S.S.; Zhang, H.; Zhang, Y.L. Design, synthesis and antitumor activities of novel aza-anthraquinone derivatives. Chin. J. Synth. Chem. 2018, 26, 261–265.
|
[1] | 马雅静, 刘焕, 唐叔南, 余四旺, 尚明英, 蔡少青. 山柰酚衍生物的合成和细胞毒性研究[J]. 中国药学(英文版), 2017, 26(9): 660-665. |
[2] | 史彦斌*, 师彦平, 张晓云, 赵全义, 倪京满 . 反相高效液相色谱法测定大鼠尿、粪便和组织中岩白菜素的含量 [J]. , 2009, 18(1): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||