http://jcps.bjmu.edu.cn

中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (9): 831-849.DOI: 10.5246/jcps.2025.09.061

• 【研究论文】 • 上一篇    下一篇

基于生物信息学的骨关节炎自噬关键基因鉴定及Eucommin A治疗潜力分析

张雅歌1, 彭紫凝2, 周榆皖1, 张锦芳1,*()   

  1. 1. 广州中医药大学深圳医院(福田) 肿瘤中心, 广东 深圳 518000
    2. 云南中医药大学第一临床医学院, 云南 昆明 650500
  • 收稿日期:2025-03-20 修回日期:2025-04-17 接受日期:2025-05-11 出版日期:2025-10-02 发布日期:2025-10-02
  • 通讯作者: 张锦芳

Bioinformatics-based identification of autophagy-related key genes in osteoarthritis and therapeutic potential analysis of Eucommin A

Yage Zhang1, Zining Peng2, Yuwan Zhou1, Jinfang Zhang1,*()   

  1. 1 Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
    2 First school of clinical medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
  • Received:2025-03-20 Revised:2025-04-17 Accepted:2025-05-11 Online:2025-10-02 Published:2025-10-02
  • Contact: Jinfang Zhang
  • Supported by:
    Guangzhou University of Chinese Medicine Shenzhen Hospital (Futian) Postdoctoral Foundation.

摘要:

本研究旨在探讨自噬相关基因在骨关节炎(OA)中的作用, 并评估杜仲关键木脂素成分——Eucommin A的治疗潜力。从基因表达综合(GEO)数据库获取OA患者与健康对照的基因表达数据。筛选差异表达基因(DEGs), 并与自噬基因数据库(Human Autophagy Database)交集以确定OA相关自噬基因。通过GO/KEGG富集分析其生物学功能及信号通路。结合机器学习算法及蛋白质-蛋白质相互作用网络筛选核心基因, 并利用独立验证集评估诊断效能。采用分子对接与100 ns分子动力学模拟验证OA自噬核心靶点与Eucommin A的结合稳定性, 结合均方根偏差(RMSD) 、均方根波动(RMSF) 、回转半径(Rg)及MM/GBSA结合自由能计算评估互作机制。结果发现, 在2436个DEGs中, 56个为自噬相关基因, 主要富集于营养响应、细胞凋亡及PI3K-Akt/FoxO通路。机器学习鉴定出EGFR、MAPK3和MAPK8为核心基因, 其中EGFR与MAPK8的诊断效能显著(AUC > 0.5) 。Eucommin A可以通过氢键与疏水作用与EGFR 及MAPK8 表现出强结合亲和力。分子动力学模拟证实其结合稳定, 且自由能分布良好。EGFR与MAPK8可作为OA自噬的诊断标志物。Eucommin A通过稳定自噬相关蛋白发挥多靶点治疗作用, 为基于自噬调控的OA治疗提供新策略。

关键词: 生物信息学, 分子动力学模拟, 骨关节炎, 自噬, Eucommin A

Abstract:

This study aimed to investigate the role of autophagy-related genes in osteoarthritis (OA) and evaluate the therapeutic potential of Eucommin A, a key lignan component derived from Eucommia ulmoides. Gene expression profiles from OA patients and healthy controls were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and intersected with autophagy-related genes from the Human Autophagy Database to pinpoint OA-specific autophagy candidates. Functional enrichment analyses via GO and KEGG highlighted involvement in nutrient response, apoptosis, and PI3K-Akt/FoxO signaling pathways. Core genes were prioritized using machine learning algorithms combined with protein-protein interaction (PPI) network analysis, followed by diagnostic validation in an independent cohort. Molecular docking and 100-ns molecular dynamics simulations were conducted to assess the binding stability between Eucommin A and the core targets. Interaction mechanisms were characterized using root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and MM/GBSA binding free energy calculations. Among 2436 DEGs, 56 were autophagy-related and significantly enriched in key biological processes. Machine learning identified EGFR, MAPK3, and MAPK8 as hub genes, with EGFR and MAPK8 exhibiting significant diagnostic value (AUC > 0.5). Eucommin A demonstrated strong binding affinity to EGFR and MAPK8 via hydrogen bonding and hydrophobic interactions. Molecular dynamics simulations confirmed stable ligand-target complexes and favorable binding free energy profiles. These findings suggested EGFR and MAPK8 as diagnostic biomarkers for OA-related autophagy. Moreover, Eucommin A exerted multi-target therapeutic effects by stabilizing these autophagy-related proteins, proposing a novel strategy for OA treatment through modulation of autophagy.

Key words: Bioinformatics, Molecular dynamics simulation, Osteoarthritis, Autophagy, Eucommin A

Supporting: