[1] |
Shirodkar, S.; Hutchinson, R.L.; Perry, D.L.; White, J.L.; Hem, S.L. Aluminum compounds used as adjuvants in vaccines. Pharm. Res. 1990, 7, 1282–1288.
|
[2] |
Kuroda, E.; Coban, C.; Ishii, K.J. Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects. Int. Rev. Immunol. 2013, 32, 209–220.
|
[3] |
Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293.
|
[4] |
Johnston, C.T.; Wang, S.L.; Hem, S.L. Measuring the surface area of aluminum hydroxide adjuvant. J. Pharm. Sci. 2002, 91, 1702–1706.
|
[5] |
Wang, S.L.; Johnston, C.T.; Bish, D.L.; White, J.L.; Hem, S.L. Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J. Colloid Interface Sci. 2003, 260, 26–35.
|
[6] |
Lindblad, E.B. Aluminium adjuvants—in retrospect and prospect. Vaccine. 2004, 22, 3658–3668.
|
[7] |
Cocke, D.L.; Johnson, E.D.; Merrill, R.P. Planar models for alumina-based catalysts. Catal. Rev. 1984, 26, 163–231.
|
[8] |
Yang, X.F.; Hu, G.X.; Zhou, Y.; Huang, P.; Zhang, X.; Zhang, F.W. Feasibility study of ultrafiltration in the preparation of aluminum hydroxide adjuvant. Int. J. Biologics. 2024, 2, 99–103.
|
[9] |
Gupta, R.K.; Siber, G.R. Adjuvants for human vaccines: current status, problems and future prospects. Vaccine. 1995, 13, 1263–1276.
|
[10] |
Dixon, J.B.; Weed, S.B.; Dinauer, R.C. Minerals in Soil Environments. 2nd ed. Soil Science Society of America Book Series. 1989, 331–378.
|
[11] |
Prodromou, K.P.; Pavlatou-Ve, A.S. Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 1995, 43, 111–115.
|
[12] |
Yang, X.F.; Liu, S.X.; Hu, G.X.; Zhou, Y.; Huang, P.; Zhang, L.; Zhang, H.; Zhang, F.W. Effect of spray addition of ammonia on the quality consistency of aluminum hydroxide adjuvant. Int. J. Biologics. 2022, 45, 196–199.
|
[13] |
Li, X.R.; Aldayel, A.M.; Cui, Z.R. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release. 2014, 173, 148–157.
|
[14] |
Morefield, G.L.; Sokolovska, A.; Jiang, D.P.; HogenEsch, H.; Robinson, J.P.; Hem, S.L. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005, 23, 1588–1595
|
[15] |
Zeng, Y.; Zhou, W.K. Aluminum hydroxide nanoparticle adjuvants can reduce the inflammatory response more efficiently in a mouse model of allergic asthma than traditional aluminum hydroxide adjuvants. Exp. Ther. Med. 2023, 27, 39.
|
[16] |
Mbhele, Z.; Thwala, L.; Khoza, T.; Ramagoma, F. Evaluation of aluminium hydroxide nanoparticles as an efficient adjuvant to potentiate the immune response against Clostridium botulinum serotypes C and D toxoid vaccines. Vaccines. 2023, 11, 1473.
|
[17] |
Yau, K.P.; Schulze, D.G.; Johnston, C.T.; Hem, S.L. Aluminum hydroxide adjuvant produced under constant reactant concentration. J. Pharm. Sci. 2006, 95, 1822–1833.
|
[18] |
Dandashli, E.A.; Zhao, Q.J.; Yitta, S.; Morefield, G.L.; White, J.L.; Hem, S.L. Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm. Dev. Technol. 2002, 7, 401–406.
|
[19] |
Colaprico, A.; Senesi, S.; Ferlicca, F.; Brunelli, B.; Ugozzoli, M.; Pallaoro, M.; O’Hagan, D.T. Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine. 2020, 38, 3600–3609.
|
[20] |
Clapp, T.; Siebert, P.; Chen, D.X.; Jones Braun, L. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J. Pharm. Sci. 2011, 100, 388–401.
|
[21] |
Rinella, J.V.; White, J.L.; Hem, S.L. Effect of pH on the elution of model antigens from aluminum-containing adjuvants. J. Colloid Interface Sci. 1998, 205, 161–165.
|
[22] |
Burrell, L.S.; Lindblad, E.B.; White, J.L.; Hem, S.L. Stability of aluminium-containing adjuvants to autoclaving. Vaccine. 1999, 17, 2599–2603.
|
[23] |
Tettenhorst, R.; Hofmann, D.A. Crystal chemistry of boehmite. Clays Clay Miner. 1980, 28, 373–380.
|
[24] |
Duprez, J.; Kalbfleisch, K.; Deshmukh, S.; Payne, J.; Haer, M.; Williams, W.; Durowoju, I.; Kirkitadze, M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput. Struct. Biotechnol. J. 2021, 19, 439–447.
|
[25] |
Mark, A.; Björkstén, B.; Granström, M. Immunoglobulin E responses to diphtheria and tetanus toxoids after booster with aluminium-adsorbed and fluid DT-vaccines. Vaccine. 1995, 13, 669–673.
|
[26] |
Wittayanukulluk, A.; Jiang, D.P.; Regnier, F.E.; Hem, S.L. Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen. Vaccine. 2004, 22, 1172–1176.
|
[27] |
Li, D.D.; Xu, M.J.; Li, G.T.; Zheng, Y.; Zhang, Y.; Xia, D.D.; Wang, S.N.; Chen, Y. Mg/Al-LDH as a nano-adjuvant for pertussis vaccine: a evaluation compared with aluminum hydroxide adjuvant. Nanotechnology. 2022, 33, 235102.
|
[28] |
He, P.; Zou, Y.N.; Hu, Z.Y. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother. 2015, 11, 477–488.
|
[29] |
Jaldin-Fincati, J.; Moussaoui, S.; Gimenez, M.C.; Ho, C.Y.; Lancaster, C.E.; Botelho, R.; Ausar, F.; Brookes, R.; Terebiznik, M. Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Mol. Microbiol. 2022, 117, 1173–1195.
|