中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (9): 801-820.DOI: 10.5246/jcps.2025.09.059
• 【综述】 • 下一篇
王鑫宇1,#, 李峙澄2,#, 罗明静1, 李丹1, 王楚瑜3, 何小丽4,*(), 胡光1,*(
)
收稿日期:
2025-05-23
修回日期:
2025-06-15
接受日期:
2025-07-11
出版日期:
2025-10-02
发布日期:
2025-10-02
通讯作者:
何小丽, 胡光
Xinyu Wang1,#, Shicheng Li2,#, Mingjing Luo1, Dan Li1, Chuyu Wang3, Xiaoli He4,*(), Guang Hu1,*(
)
Received:
2025-05-23
Revised:
2025-06-15
Accepted:
2025-07-11
Online:
2025-10-02
Published:
2025-10-02
Contact:
Xiaoli He, Guang Hu
About author:
# Xinyu Wang and Shicheng Li contributed equally to the paper.
Supported by:
摘要:
非酒精性脂肪性肝病(NAFLD)作为慢性肝病及恶性肿瘤的主要诱因, 已成为全球性的健康挑战。多项研究表明, 该疾病的发病机制与肥胖、代谢综合征、氧化应激及胰岛素抵抗(IR)等因素密切相关。尽管目前尚未明确相关治疗策略及作用靶点, 但黄酮类化合物在相关研究中常被作为关键生物活性成分类型。这类化合物可能靶向作用于NAFLD治疗进程中具有关键作用的核心潜在基因。此外, 黄酮类化合物不仅能干预胰岛素抵抗引发的脂质变性, 还可调节与脂质形成相关的蛋白酶体、细胞通路、基因表达及炎症反应等病理过程。
Supporting:
王鑫宇, 李峙澄, 罗明静, 李丹, 王楚瑜, 何小丽, 胡光. 对非酒精性脂肪肝(NAFLD)有潜在治疗作用的黄酮类成分的分类、治疗效果及作用机理[J]. 中国药学(英文版), 2025, 34(9): 801-820.
Xinyu Wang, Shicheng Li, Mingjing Luo, Dan Li, Chuyu Wang, Xiaoli He, Guang Hu. Flavonoids in non-alcoholic fatty liver disease: classification, therapeutic potential, and underlying mechanisms[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 801-820.
[1] |
Paik, J.M.; Henry, L.; Younossi, Y.; Ong, J.; Alqahtani, S.; Younossi, Z.M. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol. Commun. 2023, 7, e0251.
|
[2] |
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017, 49, 197–211.
|
[3] |
Huang, G.; Wallace, D.F.; Powell, E.E.; Rahman, T.; Clark, P.J.; Subramaniam, V.N. Gene variants implicated in steatotic liver disease: opportunities for diagnostics and therapeutics. Biomedicines. 2023, 11, 2809.
|
[4] |
Chen, S.; Wang, X.J.; Cheng, Y.; Gao, H.S.; Chen, X.H. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules. 2023, 28, 4982.
|
[5] |
Shin, J.H.; Jung, J.H. Non-alcoholic fatty liver disease and flavonoids: Current perspectives. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 17–24.
|
[6] |
Roy, J.R.; Janaki, C.S.; Jayaraman, S.; Veeraraghavan, V.P.; Periyasamy, V.; Balaji, T.; Vijayamalathi, M.; Bhuvaneswari, P.; Swetha, P. Hypoglycemic potential of Carica papaya in liver is mediated through IRS-2/PI3K/SREBP-1c/GLUT2 signaling in high-fat-diet-induced type-2 diabetic male rats. Toxics. 2023, 11, 240.
|
[7] |
Li, Q.; Tan, J.X.; He, Y.; Bai, F.; Li, S.W.; Hou, Y.W.; Ji, L.S.; Gao, Y.T.; Zhang, X.; Zhou, Z.H.; Yu, Z.; Fang, M.; Gao, Y.Q.; Li, M. Atractylenolide III ameliorates non-alcoholic fatty liver disease by activating hepatic adiponectin receptor 1-mediated AMPK pathway. Int. J. Biol. Sci. 2022, 18, 1594–1611.
|
[8] |
Afrisham, R.; Alasvand, G.; Jadidi, Y.; Farrokhi, V.; Moradi, N.; Alizadeh, S.; Fadaei, R. CCN3/NOV serum levels in non-alcoholic fatty liver disease (NAFLD) patients in comparison with the healthy group and their correlation with TNF-α and IL-6. Curr. Mol. Med. 2025, 25, 605-613.
|
[9] |
Gonzalez, A.; Huerta-Salgado, C.; Orozco-Aguilar, J.; Aguirre, F.; Tacchi, F.; Simon, F.; Cabello-Verrugio, C. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid. Med. Cell Longev. 2020, 2020, 1617805.
|
[10] |
Yu, Y.M.; Wu, D.X.; Li, Y.W.; Qiao, H.; Shan, Z.F. Ketamine enhances autophagy and endoplasmic reticulum stress in rats and SV-HUC-1 cells via activating IRE1-TRAF2-ASK1-JNK pathway. Cell Cycle. 2021, 20, 1907–1922.
|
[11] |
Song, Z.M.; Liu, F.; Chen, Y.M.; Liu, Y.J.; Wang, X.D.; Du, S.Y. CTGF-mediated ERK signaling pathway influences the inflammatory factors and intestinal flora in ulcerative colitis. Biomed. Pharmacother. 2019, 111, 1429–1437.
|
[12] |
Marmolejo-Garza, A.; Krabbendam, I.E.; Luu, M.D.A.; Brouwer, F.; Trombetta-Lima, M.; Unal, O.; O’Connor, S.J.; Majerníková, N.; Elzinga, C.R.S.; Mammucari, C.; Schmidt, M.; Madesh, M.; Boddeke, E.; Dolga, A.M. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell Death Dis. 2023, 14, 772.
|
[13] |
Papsdorf, K.; Miklas, J.W.; Hosseini, A.; Cabruja, M.; Morrow, C.S.; Savini, M.; Yu, Y.; Silva-García, C.G.; Haseley, N.R.; Murphy, L.M.; Yao, P.; de Launoit, E.; Dixon, S.J.; Snyder, M.P.; Wang, M.C.; Mair, W.B.; Brunet, A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat. Cell Biol. 2023, 25, 672–684.
|
[14] |
Chen, Z.; Tian, R.F.; She, Z.G.; Cai, J.J.; Li, H.L. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141.
|
[15] |
Li, X.; Cheng, Y.H.; Zhong, X.L.; Zhang, B.; Bao, Z.W.; Zhang, Y.; Wang, Z.G. Nuclear factor erythroid 2-related factor 2 activation mediates hyperhomocysteinemia-associated lipolysis suppression in adipocytes. Exp. Biol. Med. 2018, 243, 926–933.
|
[16] |
Adinolfi, S.; Patinen, T.; Jawahar Deen, A.; Pitkänen, S.; Härkönen, J.; Kansanen, E.; Küblbeck, J.; Levonen, A.L. The KEAP1-NRF2 pathway: targets for therapy and role in cancer. Redox Biol. 2023, 63, 102726.
|
[17] |
Suzuki, T.; Yamamoto, M. Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. J. Biol. Chem. 2017, 292, 16817–16824.
|
[18] |
Gu, Z.M.; Meng, J.Y.; Zhong, W.Q.; Lan, C.J.; Tan, Q.Q.; Xiang, X.L.; Zhou, H.; Liao, X. The role of the KEAP1-NRF2 signaling pathway in form deprivation myopia guinea pigs. BMC Ophthalmol. 2024, 24, 497.
|
[19] |
Orrù, C.; Perra, A.; Kowalik, M.A.; Rizzolio, S.; Puliga, E.; Cabras, L.; Giordano, S.; Columbano, A. Distinct mechanisms are responsible for Nrf2-Keap1 pathway activation at different stages of rat hepatocarcinogenesis. Cancers. 2020, 12, 2305.
|
[20] |
Kasai, S.Y.; Kokubu, D.; Mizukami, H.; Itoh, K. Mitochondrial reactive oxygen species, insulin resistance, and Nrf2-mediated oxidative stress response-toward an actionable strategy for anti-aging. Biomolecules. 2023, 13, 1544.
|
[21] |
Akl, M.G.; Li, L.; Baccetto, R.; Phanse, S.; Zhang, Q.Z.; Trites, M.J.; McDonald, S.; Aoki, H.; Babu, M.H.; Widenmaier, S.B. Complementary gene regulation by NRF1 and NRF2 protects against hepatic cholesterol overload. Cell Rep. 2023, 42, 112399.
|
[22] |
Wang, Y.C.; Liu, X.X.; Shi, H.; Yu, Y.; Yu, Y.; Li, M.H.; Chen, R.Z. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin. Transl. Med. 2020, 10, 91–106.
|
[23] |
Guo, T.W.; Pan, Y.; Yang, L.; Chen, G.; Deng, J.; Zhu, L.C. Flavonoid compound from Agrimonia Pilosa Ledeb improves adipose insulin resistance by alleviating oxidative stress and inflammation. BMC Complement. Med. Ther. 2023, 23, 322.
|
[24] |
Wang, Y.; Chen, C.J.; Chen, J.J.; Sang, T.T.; Peng, H.; Lin, X.J.; Zhao, Q.; Chen, S.J.; Eling, T.; Wang, X.Y. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol. 2022, 52, 102322.
|
[25] |
Xia, D.Y.; Yuan, J.L.; Jiang, X.C.; Qi, M.; Lai, N.S.; Wu, L.Y.; Zhang, X.S. SIRT1 promotes M2 microglia polarization via reducing ROS-mediated NLRP3 inflammasome signaling after subarachnoid hemorrhage. Front. Immunol. 2021, 12, 770744.
|
[26] |
Saeed, A.; Dullaart, R.P.F.; Schreuder, T.C.M.A.; Blokzijl, H.; Faber, K.N. Disturbed vitamin a metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2017, 10, 29.
|
[27] |
Liu, M.L.; Park, S. The role of PNPLA3 _rs738409 gene variant, lifestyle factors, and bioactive compounds in nonalcoholic fatty liver disease: a population-based and molecular approach towards healthy nutrition. Nutrients. 2024, 16, 1239.
|
[28] |
Sherman, D.J.; Liu, L.; Mamrosh, J.L.; Xie, J.S.; Ferbas, J.; Lomenick, B.; Ladinsky, M.S.; Verma, R.; Rulifson, I.C.; Deshaies, R.J. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. bioRxiv: the preprint server for biology. 2023, 2023.10.13.562302.
|
[29] |
Rojas, Á.; Gallego, P.; Gil-Gómez, A.; Muñoz-Hernández, R.; Rojas, L.; Maldonado, R.; Gallego-Durán, R.; García-Valdecasas, M.; Del Campo, J.A.; Bautista, J.D.; Romero-Gómez, M. Natural extracts abolished lipid accumulation in cells harbouring non-favourable PNPLA3 genotype. Ann. Hepatol. 2018, 17, 242–249.
|
[30] |
Li, F.J.; Liu, G.L.; Xue, P.L.; Ren, Z.; Dai, P.F.; Niu, W.Y.; Xin, M. YiQi YangYin decoction attenuates nonalcoholic fatty liver disease in type 2 diabetes rats. Evid. Based Complement. Alternat. Med. 2021, 2021, 5511019.
|
[31] |
Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid. Med. Cell Longev. 2022, 2022, 9966750.
|
[32] |
Xie, R.J.; Zhao, W.J.; Lowe, S.; Bentley, R.; Hu, G.Q.; Mei, H.Y.; Jiang, X.F.; Sun, C.Y.; Wu, Y.; Liu, Y.Y. Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free Radic. Biol. Med. 2022, 191, 212–226.
|
[33] |
Hsu, M.C.; Guo, B.C.; Chen, C.H.; Hu, P.A.; Lee, T.S. Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. J. Food Drug Anal. 2021, 29, 240–254.
|
[34] |
Tang, Q.Q.; Wang, Z.D.; An, X.H.; Zhou, X.Y.; Zhang, R.Z.; Zhan, X.; Zhang, W.; Zhou, J. Apigenin ameliorates H2O2-induced oxidative damage in melanocytes through nuclear factor-E2-related factor 2 (Nrf2) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways and reducing the generation of reactive oxygen species (ROS) in zebrafish. Pharmaceuticals. 2024, 17, 1302.
|
[35] |
Ares, A.M.; Bernal, J.; Janvier, A.; Toribio, L. Chiral and achiral separation of ten flavanones using supercritical fluid chromatography. Application to bee pollen analysis. J. Chromatogr. A. 2022, 1685, 463633.
|
[36] |
Silva, B.P.; Souza, R.S.; Yamaguchi, K.L.; Silva, F.A.; Koolen, H.F.; Veiga Junior, V.F.; Lima, E.S. Hepatoprotective and antioxidant activities of phenolic-rich extract from shell of nut Brazil (Bertholletia excelsa H.B.K.). Braz J. Biol. 2024, 84, e288958.
|
[37] |
Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307.
|
[38] |
Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; Zhilina, O.M.; Garsiya, E.R.; Smeriglio, A.; Trombetta, D.; Pons, D.G.; Martorell, M.; Cardoso, S.M.; Razis, A.F.A.; Sunusi, U.; Kamal, R.M.; Rotariu, L.S.; Butnariu, M.; Docea, A.O.; Calina, D. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell Longev. 2021, 2021, 3268136.
|
[39] |
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022, 27, 2901.
|
[40] |
Suzuki, T.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Anti-inflammatory effects of dietary polyphenols through inhibitory activity against metalloproteinases. Molecules. 2023, 28, 5426.
|
[41] |
Li, R.L.; Wang, L.Y.; Liu, S.Q.; Duan, H.X.; Zhang, Q.; Zhang, T.; Peng, W.; Huang, Y.L.; Wu, C.J. Natural flavonoids derived from fruits are potential agents against atherosclerosis. Front. Nutr. 2022, 9, 862277.
|
[42] |
Watanabe, N.; Inoue, K.; Hara, H.; Midorikawa, M.; Ohta, M.; Ohkura, N. Randomised, double-blind, parallel group comparison of Ashitaba (Angelica Keiskei) chalcone effects on visceral fat areas and waist circumference of overweight persons. Int. J. Food Sci. Nutr. 2024, 75, 426–435.
|
[43] |
Olaokun, O.O.; Zubair, M.S. Antidiabetic activity, molecular docking, and ADMET properties of compounds isolated from bioactive ethyl acetate fraction of Ficus lutea leaf extract. Molecules. 2023, 28, 7717.
|
[44] |
Liu, C.Q.; Pan, X.Y.; Hao, Z.H.; Wang, X.; Wang, C.; Song, G.Y. Resveratrol suppresses hepatic fatty acid synthesis and increases fatty acid β-oxidation via the microRNA-33/SIRT6 signaling pathway. Exp. Ther. Med. 2024, 28, 326.
|
[45] |
Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Sójka, M. Fructo-oligosaccharides and pectins enhance beneficial effects of raspberry polyphenols in rats with nonalcoholic fatty liver. Nutrients. 2021, 13, 833.
|
[46] |
Ku, Y.S.; Ng, M.S.; Cheng, S.S.; Lo, A.W.; Xiao, Z.X.; Shin, T.S.; Chung, G.; Lam, H.M. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients. 2020, 12, 1717.
|
[47] |
Wei, H.W.; Zhao, T.; Liu, X.L.; Ding, Q.T.; Yang, J.R.; Bi, X.Y.; Cheng, Z.Q.; Ding, C.B.; Liu, W.C. Mechanism of action of dihydroquercetin in the prevention and therapy of experimental liver injury. Molecules. 2024, 29, 3537.
|
[48] |
Oteiza, P.I.; Cremonini, E.; Fraga, C.G. Anthocyanin actions at the gastrointestinal tract: relevance to their health benefits. Mol. Aspects Med. 2023, 89, 101156.
|
[49] |
Khan, N.N.; Zurayyir, E.J.; Almuslem, M.Y.; Alshamrani, R.; Alamri, R.A.; Sulaimani, G.H.T.; Sulimani, M.H.T.; Albalawi, M.S.F.; Alzehair Alqahani, R.M.; Alanazi, E.M.; Aljawi, H.H.; Alsuliman, J.A. Anthocyanins as adjuvant treatment for non-alcoholic fatty liver disease: a systematic review and meta-analysis. Cureus. 2024, 16, e63445.
|
[50] |
Liu, Q.S.; Pan, R.; Ding, L.; Zhang, F.L.; Hu, L.F.; Ding, B.; Zhu, L.; Xia, Y.L.; Dou, X.B. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int. Immunopharmacol. 2017, 49, 132–141.
|
[51] |
Noor-E-Tabassum, Das, R.; Lami, M.S.; Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Idroes, R.; Mohamed, A.A.; Hossain, M.J.; Dhama, K.; Mostafa-Hedeab, G.; Emran, T.B. Ginkgo biloba: a treasure of functional phytochemicals with multimedicinal applications. Evid. Based Complement Altern. Med. 2022, 2022, 8288818.
|
[52] |
Yang, K.L.; Chen, J.P.; Zhang, T.Q.; Yuan, X.; Ge, A.Q.; Wang, S.S.; Xu, H.; Zeng, L.T.; Ge, J.W. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Immunol. 2022, 13, 949746.
|
[53] |
Sahin, E.; Bagci, R.; Bektur Aykanat, N.E.; Kacar, S.; Sahinturk, V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J. Food Biochem. 2020, 44, e13194.
|
[54] |
Lu, Z.; Liu, L.; Zhao, S.X.; Zhao, J.T.; Li, S.J.; Li, M.Y. Apigenin attenuates atherosclerosis and non-alcoholic fatty liver disease through inhibition of NLRP3 inflammasome in mice. Sci. Rep. 2023, 13, 7996.
|
[55] |
Yue, S.W.; Xue, N.; Li, H.L.; Huang, B.S.; Chen, Z.; Wang, X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-κB pathway in vivo and in vitro. Inflammation. 2020, 43, 1634–1648.
|
[56] |
Lv, Y.N.; Gao, X.N.; Luo, Y.; Fan, W.T.; Shen, T.T.; Ding, C.C.; Yao, M.; Song, S.Q.; Yan, L.P. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J. Nutr. Biochem. 2019, 71, 110–121.
|
[57] |
Sangeetha, R. Luteolin in the management of type 2 diabetes mellitus. Curr. Res. Nutr. Food Sci. J. 2019, 7, 393–398.
|
[58] |
Zhu, K.; Zeng, H.Z.; Yue, L.; Huang, J.N.; Ouyang, J.; Liu, Z.H. The protective effects of L-theanine against epigallocatechin gallate-induced acute liver injury in mice. Foods. 2024, 13, 1121.
|
[59] |
Ahmed, E.S.; Mohamed, H.E.; Farrag, M.A. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221137435.
|
[60] |
Li, H.C.; Liang, J.J.; Han, M.Z.; Gao, Z.P. Polyphenols synergistic drugs to ameliorate non-alcoholic fatty liver disease via signal pathway and gut microbiota: a review. J. Adv. Res. 2025, 68, 43–62.
|
[61] |
Ren, F.J.; Li, Y.; Luo, H.Y.; Gao, S.; Jiang, S.S.; Yang, J.; Rao, C.L.; Chen, Y.; Peng, C. Extraction, detection, bioactivity, and product development of luteolin: a review. Heliyon. 2024, 10, e41068.
|
[62] |
Li, L.; Jiang, W.F.; Yu, B.J.; Liang, H.Q.; Mao, S.H.; Hu, X.W.; Feng, Y.; Xu, J.D.; Chu, L.S. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomed. Pharmacother. 2023, 168, 115653.
|
[63] |
Syama, H.P.; Arya, A.D.; Dhanya, R.; Nisha, P.; Sundaresan, A.; Jacob, E.; Jayamurthy, P. Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. J. Food Sci. Technol. 2017, 54, 2115–2125.
|
[64] |
Rajizadeh, M.A.; Bejeshk, M.A.; Doustimotlagh, A.H.; Najafipour, H.; Eftekhari, M.; Mahmoodi, M.; Azizi, M.; Rostamabadi, F.; Pourghadamyari, H. The alleviating impacts of quercetin on inflammation and oxidant-antioxidant imbalance in rats with allergic asthma. Iran. J. Allergy Asthma Immunol. 2023, 22, 138–149.
|
[65] |
Wang, J.C.; Ding, L.L.; Wang, K.; Huang, R.X.; Yu, W.J.; Yan, B.Z.; Wang, H.W.; Zhang, C.; Yang, Z.J.; Liu, Z.P. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. Ecotoxicol. Environ. Saf. 2022, 241, 113772.
|
[66] |
Yang, H.; Li, D.D.; Gao, G.L. Kaempferol alleviates hepatic injury in nonalcoholic steatohepatitis (NASH) by suppressing neutrophil-mediated NLRP3-ASC/TMS1-caspase 3 signaling. Molecules. 2024, 29, 2630.
|
[67] |
Huang, L.Y.; Tan, L.P.; Lv, Z.; Chen, W.H.; Wu, J.Z. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: a comprehensive review. Heliyon. 2024, 10, e25053.
|
[68] |
Tie, F.F.; Ding, J.; Hu, N.; Dong, Q.; Chen, Z.; Wang, H.L. Kaempferol and kaempferide attenuate oleic acid-induced lipid accumulation and oxidative stress in HepG2 cells. Int. J. Mol. Sci. 2021, 22, 8847.
|
[69] |
Termkwancharoen, C.; Malakul, W.; Phetrungnapha, A.; Tunsophon, S. Naringin ameliorates skeletal muscle atrophy and improves insulin resistance in high-fat-diet-induced insulin resistance in obese rats. Nutrients. 2022, 14, 4120.
|
[70] |
Wang, Q.Y.; Ou, Y.J.; Hu, G.M.; Wen, C.; Yue, S.S.; Chen, C.; Xu, L.; Xie, J.W.; Dai, H.; Xiao, H.; Zhang, Y.Y.; Qi, R. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br. J. Pharmacol. 2020, 177, 1806–1821.
|
[71] |
Zhang, B.H.; Wan, S.S.; Liu, H.; Qiu, Q.M.; Chen, H.; Chen, Z.Y.; Wang, L.; Liu, X.H. Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid. Med. Cell Longev. 2022, 2022, 5992436.
|
[72] |
Li, J.D.; Wang, T.Q.; Liu, P.P.; Yang, F.Y.; Wang, X.D.; Zheng, W.L.; Sun, W.L. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021, 12, 3898–3918.
|
[73] |
Abdou, H.M.; Hamaad, F.A.; Ali, E.Y.; Ghoneum, M.H. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomed. Pharmacother. 2022, 149, 112838.
|
[74] |
Xie, Q.; Gao, S.Q.; Lei, M.; Li, Z.N. Hesperidin suppresses ERS-induced inflammation in the pathogenesis of non-alcoholic fatty liver disease. Aging. 2022, 14, 1265–1279.
|
[75] |
Garbiec, E.; Cielecka-Piontek, J.; Kowalówka, M.; Hołubiec, M.; Zalewski, P. Genistein-opportunities related to an interesting molecule of natural origin. Molecules. 2022, 27, 815.
|
[76] |
Yin, Y.M.; Liu, H.H.; Zheng, Z.C.; Lu, R.R.; Jiang, Z.Q. Genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats. Biomed. Pharmacother. 2019, 111, 1290–1296.
|
[77] |
Seidemann, L.; Krüger, A.; Kegel-Hübner, V.; Seehofer, D.; Damm, G. Influence of genistein on hepatic lipid metabolism in an in vitro model of hepatic steatosis. Molecules. 2021, 26, 1156.
|
[78] |
Pathak, M.P.; Pathak, K.; Saikia, R.; Gogoi, U.; Patowary, P.; Chattopadhyay, P.; Das, A. Therapeutic potential of bioactive phytoconstituents found in fruits in the treatment of non-alcoholic fatty liver disease: a comprehensive review. Heliyon. 2023, 9, e15347.
|
[79] |
Chhimwal, J.; Anand, P.; Mehta, P.; Swarnkar, M.K.; Patial, V.; Pandey, R.; Padwad, Y. Metagenomic signatures reveal the key role of phloretin in amelioration of gut dysbiosis attributed to metabolic dysfunction-associated fatty liver disease by time-dependent modulation of gut microbiome. Front. Microbiol. 2023, 14, 1210517.
|
[80] |
Liou, C.J.; Wu, S.J.; Shen, S.C.; Chen, L.C.; Chen, Y.L.; Huang, W.C. Phloretin ameliorates hepatic steatosis through regulation of lipogenesis and Sirt1/AMPK signaling in obese mice. Cell Biosci. 2020, 10, 114.
|
[81] |
Yan, T.T.; Wang, H.; Cao, L.J.; Wang, Q.; Takahashi, S.; Yagai, T.; Li, G.L.; Krausz, K.W.; Wang, G.J.; Gonzalez, F.J.; Hao, H.P. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab. Dispos. 2018, 46, 1310–1319.
|
[82] |
Liou, C.J.; Lee, Y.K.; Ting, N.C.; Chen, Y.L.; Shen, S.C.; Wu, S.J.; Huang, W.C. Protective effects of licochalcone a ameliorates obesity and non-alcoholic fatty liver disease via promotion of the sirt-1/AMPK pathway in mice fed a high-fat diet. Cells. 2019, 8, 447.
|
[83] |
Li, J.H.; Sapper, T.N.; Mah, E.; Rudraiah, S.; Schill, K.E.; Chitchumroonchokchai, C.; Moller, M.V.; McDonald, J.D.; Rohrer, P.R.; Manautou, J.E.; Bruno, R.S. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFκB pro-inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Mol. Nutr. Food Res. 2016, 60, 858–870.
|
[84] |
Sasaki, G.Y.; Li, J.H.; Cichon, M.J.; Riedl, K.M.; Kopec, R.E.; Bruno, R.S. Green tea extract treatment in obese mice with nonalcoholic steatohepatitis restores the hepatic metabolome in association with limiting endotoxemia-TLR4-NFκB-mediated inflammation. Mol. Nutr. Food Res. 2019, 63, e1900811.
|
[85] |
Hou, H.M.; Yang, W.L.; Bao, S.Q.; Cao, Y.L. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats. J. Oleo Sci. 2020, 69, 479–486.
|
[86] |
Zhu, L.F.; Cao, F.L.; Hu, Z.M.; Zhou, Y.P.; Guo, T.Y.; Yan, S.S.; Xie, Q.T.; Xia, X.X.; Yuan, H.Y.; Li, G.Y.; Luo, F.J.; Lin, Q.L. Cyanidin-3-O-glucoside alleviates alcoholic liver injury via modulating gut microbiota and metabolites in mice. Nutrients. 2024, 16, 694.
|
[87] |
Xu, J.Q.; Shen, J.Y.; Yuan, R.L.; Jia, B.N.; Zhang, Y.W.; Wang, S.J.; Zhang, Y.; Liu, M.Y.; Wang, T. Mitochondrial targeting therapeutics: promising role of natural products in non-alcoholic fatty liver disease. Front. Pharmacol. 2021, 12, 796207.
|
[88] |
Ye, X.; Chen, W.; Huang, X.F.; Yan, F.J.; Deng, S.G.; Zheng, X.D.; Shan, P.F. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: data from insulin resistant hepatocyte and diabetic mouse. Nutr. Diabetes. 2024, 14, 7.
|
[89] |
Tung, Y.T.; Zeng, J.L.; Ho, S.T.; Xu, J.W.; Li, S.M.; Wu, J.H. Anti-NAFLD effect of djulis hull and its major compound, rutin, in mice with high-fat diet (HFD)-induced obesity. Antioxidants. 2021, 10, 1694.
|
[90] |
Meng, D.C.; Zhang, F.X.; Yu, W.F.; Zhang, X.; Yin, G.L.; Liang, P.P.; Feng, Y.N.; Chen, S.W.; Liu, H.S. Biological role and related natural products of SIRT1 in nonalcoholic fatty liver. Diabetes Metab. Syndr. Obes. 2023, 16, 4043–4064.
|
[91] |
Liang, X.F.; Wang, C.; Sun, Y.; Song, W.; Lin, J.; Li, J.S.; Guan, X.R. p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem. Biophys. Res. Commun. 2019, 514, 1093–1100.
|
[92] |
EL-Shial, E.M.; Kabbash, A.; El-Aasr, M.; El-Feky, O.A.; El-Sherbeni, S.A. Elucidation of natural components of gardenia thunbergia thunb. leaves: effect of methanol extract and rutin on non-alcoholic fatty liver disease. Molecules. 2023, 28, 879.
|
[93] |
Zhao, X.; Wang, H.X.; Yang, Y.; Gou, Y.T.; Wang, Z.Y.; Yang, D.Y.; Li, C. Protective effects of silymarin against D-gal/LPS-induced organ damage and inflammation in mice. Drug Des. Devel. Ther. 2021, 15, 1903–1914.
|
[94] |
Chen, Y.H.; Lin, H.; Wang, Q.; Hou, J.W.; Mao, Z.J.; Li, Y.G. Protective role of silibinin against myocardial ischemia/reperfusion injury-induced cardiac dysfunction. Int. J. Biol. Sci. 2020, 16, 1972–1988.
|
[95] |
Ali, H.; Jahan, A.; Samrana, S.; Ali, A.; Ali, S.; Kabir, N.; Ali, A.; Ullah, R.; Mothana, R.A.; Murtaza, B.N.; Kalim, M. Hepatoprotective potential of pomegranate in curbing the incidence of acute liver injury by alleviating oxidative stress and inflammatory response. Front. Pharmacol. 2021, 12, 694607.
|
[96] |
Rani, R.; Sharma, A.; Wang, J.; Kumar, S.; Polaki, U.S.; Gandhi, C.R. Endotoxin-stimulated hepatic stellate cells augment acetaminophen-induced hepatocyte injury. Am. J. Pathol. 2022, 192, 518–535.
|
[97] |
Pferschy-Wenzig, E.M.; Atanasov, A.G.; Malainer, C.; Noha, S.M.; Kunert, O.; Schuster, D.; Heiss, E.H.; Oberlies, N.H.; Wagner, H.; Bauer, R.; Dirsch, V.M. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J. Nat. Prod. 2014, 77, 842–847.
|
[1] | 邓茜, 彭紫凝, 毛丹宁, 黄元波, 刘念, 晏蔚田, 彭江云. 基于生物信息与网络药理学探究飞龙掌血治疗骨关节炎的作用机制[J]. 中国药学(英文版), 2025, 34(9): 860-872. |
[2] | 王毅, 熊玉瑶. 基于网络药理学和分子对接探究土茯苓-薏苡仁药对治疗痛风及高尿酸血症的作用机制[J]. 中国药学(英文版), 2025, 34(8): 741-754. |
[3] | 郑宜鋆, 王哲元, 王满才, 肖琪, 邓弘扬, 李戟玭, 张岭漪, 张有成. 基于分子动力学模拟探讨泽漆对淋巴结转移阳性胃癌的潜在干预作用[J]. 中国药学(英文版), 2025, 34(7): 644-663. |
[4] | 段桂芳, 李樾, 袁霞, 宋书香, 许迎利, 周建春. 全自动膜片钳技术实验优化以及与手动膜片钳技术的对比研究——以TRPV1通道为例[J]. 中国药学(英文版), 2025, 34(5): 485-492. |
[5] | 张玉倩, 牛海英, 张晓炜, 解伟伟, 张恺玥, 张兰桐, 靳怡然. 基于网络药理学研究桑黄酮G治疗糖尿病性脑病作用机制研究[J]. 中国药学(英文版), 2025, 34(3): 251-259. |
[6] | 朱晓东, 邸学士, 孙劲晖. 基于网络药理学及分子对接技术探讨柴胡-黄芪治疗酒精性肝纤维化的作用机制[J]. 中国药学(英文版), 2025, 34(2): 163-174. |
[7] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨六味地黄丸治疗卵巢早衰的作用机制[J]. 中国药学(英文版), 2024, 33(9): 805-818. |
[8] | 朱美玲, 张基荣, 张秋荣, 林羽, 李小艳, 许文, 徐伟. 基于网络药理学和化学计量学对中成药质量控制方法研究: 以活络散为例[J]. 中国药学(英文版), 2024, 33(9): 819-836. |
[9] | 李霞, 程贝贝, 谭骏岚, 万佳婧, 王宇红, 戴爱国. 黄芪主成分槲皮素通过MAPK通路调控PASMCs铁死亡抗低氧性肺动脉高压的研究[J]. 中国药学(英文版), 2024, 33(8): 714-729. |
[10] | 魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646. |
[11] | 张啸, 钟叶, 胡永生, 王博龙. 《肿瘤良方大全》中肝癌用药规律挖掘及其核心药对机制分析[J]. 中国药学(英文版), 2024, 33(7): 647-658. |
[12] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[13] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
[14] | 王丹. 基于氧化应激相关基因的三七与黄精对近视作用的生物信息学分析[J]. 中国药学(英文版), 2024, 33(5): 438-447. |
[15] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||