中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (6): 511-524.DOI: 10.5246/jcps.2024.06.038
收稿日期:
2023-12-06
修回日期:
2024-01-12
接受日期:
2024-02-18
出版日期:
2024-06-30
发布日期:
2024-06-30
通讯作者:
王怡
Received:
2023-12-06
Revised:
2024-01-12
Accepted:
2024-02-18
Online:
2024-06-30
Published:
2024-06-30
Contact:
Yi Wang
Supported by:
摘要:
动静脉内瘘(AVF)失功与血液透析患者的临床预后呈负相关。本研究旨在通过网络药理学探索桃红四物汤改善AVF通畅性的潜在机制, 并通过分子对接及分子动力学模拟技术进行验证。通过TCMSP、TCMIP以及SwissTargetPrediction数据库获取桃红四物汤的活性成分及其潜在靶点, AVF失功相关的靶点则通过OMIM、DisGeNET及GeneCards数据库筛选。利用Cytoscape软件构建药物-活性成分-靶点网络, 并通过STRING平台构建蛋白质相互作用网络。GO与KEGG信号通路富集通过Metascape数据库实现。采用AutoDock软件进行核心成分与疾病靶点的分子对接, 并通过PyMOL实现图像可视化。利用GROMACS软件对核心成分-靶点复合物进行分子动力学模拟以验证其稳定性。共获得桃红四物汤66个活性成分与769个潜在靶点, 以及疾病相关靶点87个, 筛选的核心化学成分为gibberellin A120、gibberellin A30、kaempferola、paeoniflorin, 主要作用靶点为TNF-α、IL6、VEGFA和MMP9。信号通路富集表明桃红四物汤改善AVF失功的潜在机制主要为减轻炎症、调节流体剪切应力、以及改善细胞外基质重塑。分子对接提示核心成分与治疗靶点能自发结合, 分子动力学模拟同样证实成分-靶点复合物的稳定性。研究表明, 桃红四物汤可能通过改善炎症、流体剪切力、以及细胞外基质重塑改善AVF通畅性, 为桃红四物汤的临床应用提供了分子学基础。
Supporting:
韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524.
Shisheng Han, Yi Wang. Elucidating the mechanisms underlying Taohong Siwu Decoction in preventing arteriovenous fistula failure: A comprehensive study combining network pharmacology, molecular docking, and dynamic simulation[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 511-524.
Figure 2. The herb-active component-core targets network (HH: Honghua; DH: Shudihuang; TR: Taoren; BS: Baishao; DG: Danggui; CX: Chuanxiong; HB: the common component of Honghua and Baishao; DC: the common component of Danggui and Chuanxiong). The size of the graph gradually changed from large to small according to the degree. The larger the degree value was, the more important role the part played in the network.
[1] |
Ravani, P.; Palmer, S.C.; Oliver, M.J.; Quinn, R.R.; MacRae, J.M.; Tai, D.J.; Pannu, N.I.; Thomas, C.; Hemmelgarn, B.R.; Craig, J.C.; Manns, B.; Tonelli, M.; Strippoli, G.F.M.; James, M.T. Associations between hemodialysis access type and clinical outcomes: a systematic review. J. Am. Soc. Nephrol. 2013, 24, 465–473.
|
[2] |
Al-Jaishi, A.A.; Oliver, M.J.; Thomas, S.M.; Lok, C.E.; Zhang, J.C.; Garg, A.X.; Kosa, S.D.; Quinn, R.R.; Moist, L.M. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 2014, 63, 464–478.
|
[3] |
Polkinghorne, K.R.; McDonald, S.P.; Atkins, R.C.; Kerr, P.G. Vascular access and all-cause mortality. J. Am. Soc. Nephrol. 2004, 15, 477–486.
|
[4] |
Viecelli, A.K.; Mori, T.A.; Roy-Chaudhury, P.; Polkinghorne, K.R.; Hawley, C.M.; Johnson, D.W.; Pascoe, E.M.; Irish, A.B. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: optimism unfulfilled. Semin. Dial. 2018, 31, 244–257
|
[5] |
Irish, A.B.; Viecelli, A.K.; Hawley, C.M.; Hooi, L.S.; Pascoe, E.M.; Paul-Brent, P.A.; Badve, S.V.; Mori, T.A.; Cass, A.; Kerr, P.G.; Voss, D.; Ong, L.M.; Polkinghorne, K.R. Effect of fish oil supplementation and aspirin use on arteriovenous fistula failure in patients requiring hemodialysis. JAMA Intern. Med. 2017, 177, 184–193.
|
[6] |
Saran, R.; Dykstra, D.M.; Wolfe, R.A.; Gillespie, B.; Held, P.J.; Young, E.W. Association between vascular access failure and the use of specific drugs: the dialysis outcomes and practice patterns study (DOPPS). Am. J. Kidney Dis. 2002, 40, 1255–1263.
|
[7] |
Herrington, W.; Emberson, J.; Staplin, N.; Blackwell, L.; Fellström, B.; Walker, R.; Levin, A.; Hooi, L.S.; Massy, Z.A.; Tesar, V.; Reith, C.; Haynes, R.; Baigent, C.; Landray, M.J.; Investigators, S.H.A.R.P. The effect of lowering LDL cholesterol on vascular access patency: post hoc analysis of the Study of Heart and Renal Protection. Clin. J. Am. Soc. Nephrol. 2014, 9, 914–919.
|
[8] |
Chen, F.A.; Chien, C.C.; Chen, Y.W.; Wu, Y.T.; Lin, C.C. Angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers are associated with prolonged vascular access patency in uremic patients undergoing hemodialysis. PLoS One. 2016, 11, e0166362.
|
[9] |
Peden, E.K.; Lucas, J.F.III.; Browne, B.J.; Settle, S.M.; Scavo, V.A.; Bleyer, A.J.; Ozaki, C.K.; Teruya, T.H.; Wilson, S.E.; Mishler, R.E.; Ferris, B.L.; Hendon, K.S.; Moist, L.; Dixon, B.S.; Wong, M.D.; Magill, M.; Lindow, F.; Gustafson, P.; Burke, S.K.; PATENCY-2 Investigators. PATENCY-2 trial of vonapanitase to promote radiocephalic fistula use for hemodialysis and secondary patency. J. Vasc. Access. 2022, 23, 265–274.
|
[10] |
Tong, Y.Q.; Jing, Y.E.; Qu, Z.P. Effect of Chinese herbal fomentation on arteriovenous fistula maturation. J. Altern. Complement. Med. 2011, 17, 749–753.
|
[11] |
Wang, R.R.; Deng, L.; Zhang, G.Q; Chen, X.Y.; Bao, K. The effects of iontophoretic injections of salvia miltiorrhiza on the maturation of the arteriovenous fistula: A randomized, controlled trial. Altern. Ther. Health Med. 2016, 22, 18–22.
|
[12] |
Su, P.L.; Bao, K.; Peng, H.G.; Mao, W.; Wang, G.S.; Yang, N.Z.; Geng, W.J.; Lin, Y.Q.; Jie, X.N. Effects of Tongmai oral liquid in femoral ateriovenous fistula. BMC Complement. Altern. Med. 2015, 15, 311.
|
[13] |
Liu, Y.; Yin, H.J.; Shi, D.Z.; Chen, K.J. Chinese herb and formulas for promoting blood circulation and removing blood stasis and antiplatelet therapies. Evid. Based Complement. Alternat. Med. 2012, 2012, 184503.
|
[14] |
Han, S.S.; He, X.J.; Gu, Y.D.; Yao, T.W.; Xu, Y.Q.; Wang, Y. Therapeutic effect of treatment of traditional Chinese medicine on protecting arteriovenous fistula in hemodialysis and systematic review of medication analysis. Chin. J. Integr. Tradit. West. Nephrol. 2020, 21, 1060–1063.
|
[15] |
Wu, C.J.; Chen, J.T.; Yen, T.L.; Jayakumar, T.; Chou, D.S.; Hsiao, G.; Sheu, J.R. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid. Based Complement. Alternat. Med. 2011, 2011, 803015.
|
[16] |
Yan, H.; Wang, J.; Fu, H.; Yang, M.; Qu, M.; Fang, Z.E. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology. J. Chin. Pharm. Sci. 2023, 32, 446–459.
|
[17] |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015, I, 40–270.
|
[18] |
Shang, Y.; Lin, X.Y.; Zhang, T.T.; Xie, L.H.; Hu, G.H. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking. J. Chin. Pharm. Sci. 2022, 31, 117–133.
|
[19] |
Wang, M.Y.; Zhang, K.Y.; Chen, X.; Fu, H.; Peng, S.C. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology. J. Chin. Pharm. Sci. 2023, 32, 351–359.
|
[20] |
Nan, B.Y.; Xiong, G.F.; Zhao, Z.R.; Gu, X.; Huang, X.S. Comprehensive identification of potential crucial genes and miRNA-mRNA regulatory networks in papillary thyroid cancer. BioMed Res. Int. 2021, 2021, 1–25.
|
[21] |
Zhou, Y.Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.
|
[22] |
Metascape. Statistics for enrichment analysis. This article can be found online at http://metascape.org/.
|
[23] |
Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F. Jr. Docking with AutoDock4. Methods Mol. Biol. 2019, 2053, 125–148.
|
[24] |
Li, X.Y.; Zhang, C.Y.; Tan, Z.J.; Yuan, J.L. Network pharmacology-based analysis of gegenqinlian decoction regulating intestinal microbial activity for the treatment of diarrhea. Evid. Based Complement. Altern. Med. 2021, 2021, 1–13.
|
[25] |
Guo, L.J.; Shi, H.X.; Zhu, L.M. Siteng Fang reverses multidrug resistance in gastric cancer: a network pharmacology and molecular docking study. Front. Oncol. 2021, 11, 671382.
|
[26] |
Chen, Z.G.; Huang, J.R.; Pu, H.Y.; Yang, Q.; Fang, C.L. The effects of HHP (high hydrostatic pressure) on the interchain interaction and the conformation of amylopectin and double-amylose molecules. Int. J. Biol. Macromol. 2020, 155, 91–102.
|
[27] |
DeVita, M.V.; Khine, S.K.; Shivarov, H. Novel approaches to arteriovenous access creation, maturation, suitability, and durability for dialysis. Kidney Int. Rep. 2020, 5, 769–778.
|
[28] |
Lawson, J.H.; Niklason, L.E.; Roy-Chaudhury, P. Challenges and novel therapies for vascular access in haemodialysis. Nat. Rev. Nephrol. 2020, 16, 586–602.
|
[29] |
Lee, T. Novel paradigms for dialysis vascular access: downstream vascular biology: is there a final common pathway? Clin. J. Am. Soc. Nephrol. 2013, 8, 2194–2201.
|
[30] |
Hu, H.D.; Patel, S.; Hanisch, J.J.; Santana, J.M.; Hashimoto, T.; Bai, H.L.; Kudze, T.; Foster, T.R.; Guo, J.M.; Yatsula, B.; Tsui, J.; Dardik, A. Future research directions to improve fistula maturation and reduce access failure. Semin. Vasc. Surg. 2016, 29, 153–171.
|
[31] |
Chiu, J.J.; Shu, C.E. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 2011, 91, 327–387.
|
[32] |
Gameiro, J.; Ibeas, J. Factors affecting arteriovenous fistula dysfunction: a narrative review. J. Vasc. Access 2020, 21, 134–147.
|
[33] |
Chang, C.J.; Ko, Y.S.; Ko, P.J.; Hsu, L.A.; Chen, C.F.; Yang, C.W.; Hsu, T.S.; Pang, J.H S. Thrombosed arteriovenous fistula for hemodialysis access is characterized by a marked inflammatory activity. Kidney Int. 2005, 68, 1312–1319.
|
[34] |
Candan, F.; Yildiz, G.; Kayataş, M. Role of the VEGF 936 gene polymorphism and VEGF-A levels in the late-term arteriovenous fistula thrombosis in patients undergoing hemodialysis. Int. Urol. Nephrol. 2014, 46, 1815–1823.
|
[35] |
Yang, B.X.; Janardhanan, R.; Vohra, P.; Greene, E.L.; Bhattacharya, S.; Withers, S.; Roy, B.; Nieves Torres, E.C.; Mandrekar, J.; Leof, E.B.; Mukhopadhyay, D.; Misra, S. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int. 2014, 85, 289–306.
|
[36] |
Lee, E.S.; Shen, Q.; Pitts, R.L.; Guo, M.Z.; Wu, M.H.; Sun, S.C.; Yuan, S.Y. Serum metalloproteinases MMP-2, MMP-9, and metalloproteinase tissue inhibitors in patients are associated with arteriovenous fistula maturation. J. Vasc. Surg. 2011, 54, 454–460.
|
[37] |
Tirinescu, D.C.; Tomuleasa, C.; Pop, L.; Bondor, C.I.; Vlăduţiu, D.Ş.; Paţiu, I.M.; Rusu, C.C.; Moldovan, D.T.; Potra, A.; Kacsó, I.M. Matrix-metalloproteinase-2 predicts arteriovenous fistula failure in hemodialysis patients. Ther. Apher. Dial. 2017, 21, 586–591.
|
[38] |
Shih, Y.C.; Chen, P.Y.; Ko, T.M.; Huang, P.H.; Ma, H.; Tarng, D.C. MMP-9 deletion attenuates arteriovenous fistula neointima through reduced perioperative vascular inflammation. Int. J. Mol. Sci. 2021, 22, 5448.
|
[39] |
Reihill, J.A.; Malcomson, B.; Bertelsen, A.; Cheung, S.; Czerwiec, A.; Barsden, R.; Elborn, J.S.; Dürkop, H.; Hirsch, B.; Ennis, M.; Kelly, C.; Schock, B.C. Induction of the inflammatory regulator A20 by gibberellic acid in airway epithelial cells. Br. J. Pharmacol. 2016, 173, 778–789.
|
[40] |
Xu, H.; Shi, D.Z.; Chen, K.J.; Ma, X.C.; Li, Y.L.; Meng, L.; Yuan, W.M. Effect of Xiongshao capsule on vascular remodeling in porcine coronary balloon injury model. Chin. J. Integr. Tradit. West. Med. 2000, 6, 278–282.
|
[41] |
Chen, K.J.; Shi, D.Z.; Xu, H.; Lü, S.Z.; Li, T.C.; Ke, Y.N.; Zhang, M.Z.; Lu, X.Y.; Sun, R.Y.; You, S.J. XS0601 reduces the incidence of restenosis: a prospective study of 335 patients undergoing percutaneous coronary intervention in China. Chin. Med. J. 2006, 119, 6–13.
|
[42] |
Ngo, T.; Kim, K.; Bian, Y.Y.; Noh, H.; Lim, K.M.; Chung, J.H.; Bae, O.N. Antithrombotic effects of paeoniflorin from paeonia suffruticosa by selective inhibition on shear stress-induced platelet aggregation. Int. J. Mol. Sci. 2019, 20, 5040.
|
[43] |
Li, W.F.; Zhi, W.B.; Liu, F.; Zhao, J.M.; Yao, Q.; Niu, X.F. Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int. Immunopharmacol. 2018, 54, 103–111.
|
[44] |
Fan, X.W.; Wu, J.T.; Yang, H.T.; Yan, L.J.; Wang, S.L. Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol. Med. Rep. 2017, 15, 1676–1682.
|
[45] |
Ren, J.E.; Lu, Y.F.; Qian, Y.H.; Chen, B.Z.; Wu, T.; Ji, G.A. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med. 2019, 18, 2759–2776.
|
[46] |
Yao, H.; Sun, J.Y.; Wei, J.E.; Zhang, X.; Chen, B.; Lin, Y.J. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2020, 11, 1118.
|
[47] |
Hu, W.H.; Wang, H.Y.; Xia, Y.T.; Dai, D.K.; Xiong, Q.P.; Dong, T.T.X.; Duan, R.; Chan, G.K.L.; Qin, Q.W.; Tsim, K.W.K. Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front. Pharmacol. 2020, 11, 526.
|
[1] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
[2] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
[3] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
[4] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
[5] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
[6] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[7] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[8] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
[9] | 张弘, 张莎莎, 王焕芸, 梁越, 武世奎, 孙丽君, 夏慧敏, 白云霞, 张慧文. 基于血清药物化学和网络药理学的荜茇抗胃溃疡药效物质基础分析[J]. 中国药学(英文版), 2024, 33(2): 156-168. |
[10] | 王丹. 基于网络药理学探讨中药逍遥丸治疗失眠的药理机制[J]. 中国药学(英文版), 2024, 33(2): 169-177. |
[11] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[12] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[13] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[14] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[15] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||