[1] |
Zhang, H.; Zheng, Y. Beta amyloid hypothesis in Alzheimer’s Disease: Pathogenesis, Prevention, and Management. Acta. Acad. Med. Sin. 2019, 41, 702–708.
|
[2] |
Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 4850.
|
[3] |
Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021, 276, 119129.
|
[4] |
Zhang, X.M.; Lian, S.H.; Zhang, Y.S.; Zhao, Q.C. Efficacy and safety of donepezil for mild cognitive impairment: a systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2022, 213, 107134.
|
[5] |
Yang, X.Y.; Wang, X.C.; Huang, C.H.; Huang, Z.S. Research progress in the treatment of Alzheimer’s disease with traditional Chinese medicine. Chin. J. Ethnomed. Ethnopharm. 2016, 25, 37–38.
|
[6] |
Qian, Y.; Shao, Y.R.; Lu, S.F.; Wang, J.J.; Chen, Z.P. Research Progress on Traditional Chinese Medicine in the Treatment of Alzheimer’s Disease. J. Nanjing Univ. Tradit. Chin. Med. 2019, 35, 761–766.
|
[7] |
Li, L.; Zhang, L. Action Characteristics of Traditional Chinese Medicine in Treatment of Alzheimer’s Disease. Prog. Biochem.Biophys. 2012, 39, 816–828.
|
[8] |
Fu, M.Q.; Zou, B.; An, K.J.; Yu, Y.S.; Tang, D.B.; Wu, J.J.; Xu, Y.J.; Ti, H.H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’). Food Funct. 2019, 10, 903–911.
|
[9] |
Ho, S.C.; Kuo, C.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem. Toxicol. 2014, 71, 176–182.
|
[10] |
Bian, X.Q.; Xie, X.Y.; Cai, J.L.; Zhao, Y.R.; Miao, W.; Chen, X.L.; Xiao, Y.; Li, N.; Wu, J.L. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem. 2022, 373, 131399.
|
[11] |
Li, X.C.; Huang, Y.P.; Chen, D.F. Protective effect against hydroxyl-induced DNA damage and antioxidant activity of Citri reticulatae pericarpium. Adv. Pharm. Bull. 2013, 3, 175–181.
|
[12] |
Song, L.; Xiong, P.; Zhang, W.; Hu, H.C.; Tang, S.Q.; Jia, B.; Huang, W. Mechanism of citri reticulatae pericarpium as an anticancer agent from the perspective of flavonoids: a review. Molecules. 2022, 27, 5622.
|
[13] |
Yuan, H.D.; Ma, Q.Q.; Cui, H.Y.; Liu, G.C.; Zhao, X.Y.; Li, W.; Piao, G.C. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017, 22, 1135.
|
[14] |
Marsh, D.T.; Das, S.; Ridell, J.; Smid, S.D. Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2’, 3’, 4’-trihydroxyflavone (2-D08). Bioorg. Med. Chem. 2017, 25, 3827–3834.
|
[15] |
Jung, M.; Park, M. Acetylcholinesterase inhibition by flavonoids from agrimonia Pilosa. Molecules. 2007, 12, 2130–2139.
|
[16] |
Kim, J.Y.; Lee, W.S.; Kim, Y.S.; Curtis-Long, M.J.; Lee, B.W.; Ryu, Y.B.; Park, K.H. Isolation of cholinesterase-inhibiting flavonoids from morus lhou. J. Agric. Food Chem. 2011, 59, 4589–4596.
|
[17] |
Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Nabavi, S.M.; Sobarzo-Sanchez, E.; Nabavi, S.F. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol. Disord. Drug Targets. 2017, 16, 387–397.
|
[18] |
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318.
|
[19] |
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.; Bennett, D.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. & Redox Signal. 2017, 27, 1269–1280.
|
[20] |
Greilberger, J.; Koidl, C.; Greilberger, M.; Lamprecht, M.; Schroecksnadel, K.; Leblhuber, F.; Fuchs, D.; Oettl, K. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free. Radic. Res. 2008, 42, 633–638.
|
[21] |
Lazarev, V.F.; Tsolaki, M.; Mikhaylova, E.R.; Benken, K.A.; Shevtsov, M.A.; Nikotina, A.D.; Lechpammer, M.; Mitkevich, V.A.; Makarov, A.A.; Moskalev, A.A.; Kozin, S.A.; Margulis, B.A.; Guzhova, I.V.; Nudler, E. Extracellular GAPDH promotes alzheimer disease progression by enhancing amyloid-β aggregation and cytotoxicity. Aging Dis. 2021, 12, 1223–1237.
|
[22] |
Mansour, H.M.; Fawzy, H.M.; El-Khatib, A.S.; Khattab, M.M. Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer’s disease: current perspectives and challenging prospects. Neuroscience. 2021, 469, 191–196.
|
[23] |
Ian, Z. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neuro-Signals. 2005, 14, 207–221.
|
[24] |
Brigman, J.L.; Wright, T.; Talani, G.; Prasad-Mulcare, S.; Jinde, S.; Seabold, G.K.; Mathur, P.; Davis, M.I.; Bock, R.; Gustin, R.M.; Colbran, R.J.; Alvarez, V.A.; Nakazawa, K.; Delpire, E.; Lovinger, D.M.; Holmes, A. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 2010, 30, 4590–4600.
|
[25] |
Wang, X.; Zhou, X.; Li, G.Y.; Zhang, Y.; Wu, Y.L.; Song, W.H. Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front. Mol. Neurosci. 2017, 10, 294.
|
[26] |
Müller, U.C.; Deller, T.; Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281–298.
|
[27] |
Siddiq, A.; Aminova, L.R.; Ratan, R.R. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem. Res. 2007, 32, 931–946.
|
[28] |
Chen, X.; Hu, J.Y.; Chen, Q.H.; Liang, L.C.; Wang, L.Y.; Liang, Z.W.; Wang, Y.; Cai M. Metabolic disorder mechanisms of cognitive dysfunction in AD: brain insulin resistance and impairment of the PI3K/Akt signaling pathway. Chem. Life. 2020, 40, 269–276.
|
[29] |
Khan, A.W.; Farooq, M.; Hwang, M.J.; Haseeb, M.; Choi, S. Autoimmune neuroinflammatory diseases: role of interleukins. Int. J. Mol. Sci. 2023, 24, 7960.
|
[30] |
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21.
|
[31] |
Li, M.; Zhang, W.R.; Wang, W.; He, Q.; Yin, M.M.; Qin, X.E.; Zhang, T.Y.; Wu, T. Imidazole improves cognition and balances Alzheimer’s-like intracellular calcium homeostasis in transgenic Drosophila model. Neurourol. Urodyn. 2018, 37, 1250–1257.
|
[32] |
Berridge, M.J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013, 7, 2–13.
|