[1] |
International Diabetes Federation. IDF Diabetes Atlas-7th Edition [EB/OL]. http://www.diabetesatlas.org, 2021-06-08.
|
[2] |
Markowicz-Piasecka, M.; Sikora, J.; Szydłowska, A.; Skupień, A.; Mikiciuk-Olasik, E.; Huttunen, K.M. Metformin-A future therapy for neurodegenerative diseases: Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm. Res. 2017, 34, 2614–2627.
|
[3] |
Bogush, M.; Heldt, N.A.; Persidsky, Y. Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J. Neuroimmune Pharmacol. 2017, 12, 593–601.
|
[4] |
Abou-El-Hassan, H.; Dia, B.; Choucair, K.; Eid, S.A.; Najdi, F.; Baki, L.; Talih, F.; Eid, A.A.; Kobeissy, F. Traumatic brain injury, diabetic neuropathy and altered-psychiatric health: The fateful triangle. Med. Hypotheses. 2017, 108, 69–80.
|
[5] |
Belanger, A.; Lavoie, N.; Trudeau, F.; Massicotte, G.; Gagnon, S. Preserved LTP and water maze learning in hyperglycaemic–hyperinsulinemic ZDF rats. Physiol. Behav. 2004, 83, 483–494.
|
[6] |
Zeng, W.Y.; Suo, Y.R.; Li, H.H.; Wei, B.; Sun, Y.X.; Yang, L.; Jiang, X.J. Research progress of active components of traditional Chinese medicine on prevention of diabetic cognitive deficits. Liaoning J. Tradit. Chin. Med. 2017, 44, 2667–2671.
|
[7] |
Zhou, L.P.; Zhamg, X.K.; Wang, F. Experimental Research Progress on Prevention and Treatment of Cognitive Dysfunction in Diabetes Mellitusby Traditional Chinese Medicine. Chin. J. Exp. Tradit. Med. Form. 2019, 25, 227–234.
|
[8] |
Jung, H.W.; Kang, S.Y.; Kang, J.S.; Kim, A.R.; Woo, E.R.; Park, Y.K. Effect of Kuwanon G isolated from the root bark of Morus alba on ovalbumin-induced allergic response in a mouse model of asthma. Phytother. Res. 2014, 28, 1713–1719.
|
[9] |
Liu, X.X.; Zhang, X.W.; Wang, K.; Wang, X.Y.; Ma, W.L.; Cao, W.; Mo, D.; Sun, Y.; Li, X.Q. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NFκB activity in macrophages. Toxicol. Appl. Pharmacol. 2018, 341, 56–63.
|
[10] |
Gan, W.J.; Gao, C.L.; Zhang, W.Q.; Gu, J.L.; Zhao, T.T.; Guo, H.L.; Zhou, H.; Xu, Y.; Yu, L.L.; Li, L.F.; Gui, D.K.; Xu, Y.H. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage. Exp. Ther. Med. 2021, 21, 425.
|
[11] |
Yang, T.; Chen, X.; Mei, Z.; Liu, X.; Feng, Z.; Liao, J.; Deng, Y.; Ge, J. An integrated analysis of network pharmacology and experimental validation to reveal the mechanism of Chinese medicine formula Naotaifang in treating cerebral ischemia-reperfusion injury. Drug Des. Devel. Ther. 2021, 15, 3783–3808.
|
[12] |
Dong, Y.; Hao, L.; Fang, K.; Han, X.X.; Yu, H.; Zhang, J.J.; Cai, L.J.; Fan, T.; Zhang, W.D.; Pang, K.; Ma, W.M.; Wang, X.T.; Han, C.H. A network pharmacology perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement. Med. Ther. 2021, 21, 45.
|
[13] |
Llorens-MarÃtin, M.; Jurado, J.; Hernández, F.; Ãvila, J. GSK-3β, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci. 2014, 7, 46.
|
[14] |
Engel, T.; Lucas, J.J.; Gómez-Ramos, P.; Moran, M.A.; Ávila, J.; Hernández, F. Cooexpression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol. Aging. 2006, 27, 1258–1268.
|
[15] |
Su, J.H.; Zhao, M.; Anderson, A.J.; Srinivasan, A.; Cotman, C.W. Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res. 2001, 898, 350–357.
|
[16] |
Płóciennik, A.; Prendecki, M.; Zuba, E.; Siudzinski, M.; Dorszewska, J. Activated caspase-3 and neurodegeneration and synaptic plasticity in Alzheimer’s disease. Adv. Alzheimers. Dis. 2015, 4, 63–77.
|
[17] |
Maphis, N.; Jiang, S.Y.; Xu, G.X.; Kokiko-Cochran, O.N.; Roy, S.M.; Van Eldik, L.J.; Watterson, D.M.; Lamb, B.T.; Bhaskar, K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers. Res. Ther. 2016, 8, 54.
|
[18] |
Schnöder, L.; Gasparoni, G.; Nordström, K.; Schottek, A.; Tomic, I.; Christmann, A.; Schäfer, K.H.; Menger, M.D.; Walter, J.; Fassbender, K.; Liu, Y. Neuronal deficiency of p38α-MAPK ameliorates symptoms and pathology of APP or Tau-transgenic Alzheimer’s mouse models. FASEB J. 2020, 34, 9628–9649.
|
[19] |
Zhou, Y.L.; Du, Y.F.; Du, H.; Shao, P. Insulin resistance in Alzheimer’s disease (AD) mouse intestinal macrophages is mediated by activation of JNK. Eur. Rev. Med. Pharmaco. 2017, 21, 1787–1794.
|
[20] |
Christiansen, A.R.; Lipshultz, L.I.; Hotaling, J.M. Selective androgenreceptor modulators: the future of androgen therapy? Transl. Androl. Urol. 2020, 9, 135–148.
|
[21] |
Khan, M.A.; Alam, Q.; Haque, A.; Ashafaq, M.; Khan, M.J.; Ashraf, G.M.; Ahmad, M. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: an update. Curr. Neuropharmacol. 2019, 17, 232–246.
|
[22] |
Mohseni-Moghaddam, P.; Ghobadian, R.; Khaleghzadeh-Ahangar, H. Dementia in diabetes mellitus and atherosclerosis: Two interrelated systemic diseases. Brain Res. Bull. 2022, 181, 87–96.
|
[23] |
Shen, C.Y.; Lu, C.H.; Wu, C.H.; Li, K.J.; Kuo, Y.M.; Hsieh, S.C.; Yu, C.L. The development of Maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules. 2020, 25, 5591.
|
[24] |
Byun, K.; Yoo, Y.; Son, M.; Lee, J.; Jeong, G.B.; Park, Y.M.; Salekdeh, G.H.; Lee, B. Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol. Ther. 2017, 177, 44–55.
|
[25] |
de Retana, S.F.; Marazuela, P.; Solé, M.; Colell, G.; Bonaterra, A.; Sánchez-Quesada, J.L.; Montaner, J.; Maspoch, D.; Cano-Sarabia, M.; Hernández-Guillamon, M. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. Alzheimers Res. Ther. 2019, 11, 42.
|
[26] |
Yang, H.M.; Xie, T.T.; Li, D.R.; Du, X.H.; Wang, T.X.; Li, C.Y.; Song, X.J.; Xu, L.Q.; Yi, F.; Liang, X.H.; Gao, L.F.; Yang, X.D.; Ma, C.H. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol. Metab. 2019, 23, 24–36.
|
[27] |
Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; Natunen, T. Altered insulin signaling in Alzheimer’s disease brain–special emphasis on PI3K-Akt pathway. Front. Neurosci. 2019, 13, 629.
|
[28] |
Su, F.; Shu, H.; Ye, Q.; Wang, Z.; Xie, C.; Yuan, B.; Zhang, Z.; Bai, F. Brain insulin resistance deteriorates cognition by altering the topological features of brain networks. Neuroimage Clin. 2017, 13, 280–287.
|