中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (10): 782-797.DOI: 10.5246/jcps.2022.10.068
收稿日期:
2022-06-23
修回日期:
2022-07-15
接受日期:
2022-08-18
出版日期:
2022-10-31
发布日期:
2022-10-31
通讯作者:
江兴
作者简介:
基金资助:
Weiwei Jiang1,#, Haiyan Quan1,#, Lu He2, Xing Jiang3,*()
Received:
2022-06-23
Revised:
2022-07-15
Accepted:
2022-08-18
Online:
2022-10-31
Published:
2022-10-31
Contact:
Xing Jiang
About author:
摘要:
含伴侣素的无尾复合多肽1(CCT)是一组参与蛋白质折叠的基因, 有报道与多种肿瘤的发生发展相关。然而, 与肝细胞癌(HCC)癌变和进展相关的不同表达水平和功能的CCT尚未得到系统分析。本研究通过ONCOMINE、GEPIA、the Human Protein Atlas、cBioPortal、Kaplan-Meier Plotter和R语言等工具研究HCC中CCTs的表达水平、突变模式、诊断和预后价值, 并进行功能富集。结果显示, 所有CCT家族成员的转录和翻译水平在HCC患者中显著升高, 并与肿瘤分期有关。CCT家族成员, 特别是CCT2和CCT8都可能作为HCC的诊断、预后标志物和潜在的治疗靶点。
Supporting:
蒋维维, 全海燕, 何璐, 江兴. 基于生物信息学的CCTs对人肝细胞癌的诊断和预后价值[J]. 中国药学(英文版), 2022, 31(10): 782-797.
Weiwei Jiang, Haiyan Quan, Lu He, Xing Jiang. The diagnostic and prognostic value of CCTs in human hepatocellular carcinoma: a study based on integrated bioinformatics[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(10): 782-797.
Figure 2. The transcriptional levels of CCT family members in HCC (GEPIA). (A) mRNA expression profile (dot plots); (B) mRNA expression profile (box plots).
Figure 7. Mutation and correlation of CCTs and related genes in HCC (cBioPortal and Cytoscape). (A) Summary of mutation analysis (cBioPortal); (B) Oncoprint view of mutation analysis of each CCT family member (cBioPortal); (C) The relationship between CCTs mutation and survival outcomes (OS and DFS); (D) Relevance between different CCTs (cBioPortal); (E) The network of CCT family members and the 50 most relevant genes (Cytoscape).
Figure 8. GO and KEGG enrichment analyses of CCT family members and related genes in HCC. (A) Bubble diagram of BP enriched terms; (B) Bubble diagram of MF enriched terms; (C) Bubble diagram of CC enriched terms; (D) Bubble diagram of KEGG enriched terms.
[1] |
Chen, W.Q.; Zheng, R.S.; Baade, P.D.; Zhang, S.W.; Zeng, H.M.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA A Cancer J. Clin. 2016, 66, 115–132.
|
[2] |
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA A Cancer J. Clin. 2015, 65, 87–108.
|
[3] |
Huang, Y.L.; Wang, H.B.; Lian, Y.F.; Wu, X.J.; Zhou, L.; Wang, J.L.; Deng, M.H.; Huang, Y.H. Upregulation of kinesin family member 4A enhanced cell proliferation via activation of Akt signaling and predicted a poor prognosis in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 141.
|
[4] |
Ning, G.; Huang, Y.L.; Zhen, L.M.; Xu, W.X.; Jiao, Q.; Yang, F.J.; Wu, L.N.; Zheng, Y.Y.; Song, J.; Wang, Y.S.; Xie, C.; Peng, L. Transcriptional expressions of Chromobox 1/2/3/6/8 as independent indicators for survivals in hepatocellular carcinoma patients. Aging. 2018, 10, 3450–3473.
|
[5] |
Vallin, J.; Grantham, J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress. Chaperones. 2019, 24, 17–27.
|
[6] |
Kaisari, S.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Teichner, A.; Hershko, A. Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes. PNAS. 2017, 114, 956–961.
|
[7] |
Tracy, C.M.; Gray, A.J.; Cuéllar, J.; Shaw, T.S.; Howlett, A.C.; Taylor, R.M.; Prince, J.T.; Ahn, N.G.; Valpuesta, J.M.; Willardson, B.M. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J. Biol. Chem. 2014, 289, 4490–4502.
|
[8] |
Kasembeli, M.; Lau, W.C.Y.; Roh, S.H.; Eckols, T.K.; Frydman, J.; Chiu, W.; Tweardy, D.J. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 2014, 12, e1001844.
|
[9] |
Svanström, A.; Grantham, J. The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro. Cell Stress. Chaperones. 2016, 21, 55–62.
|
[10] |
Echbarthi, M.; Vallin, J.; Grantham, J. Interactions between monomeric CCTδ and p150Glued: a novel function for CCTδ at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Exp. Cell Res. 2018, 370, 137–149.
|
[11] |
Rhodes, D.R.; Yu, J.J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pander, A.; Chinnaiyan, A.M. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004, 6, 1–6.
|
[12] |
Tang, Z.F.; Li, C.W.; Kang, B.X.; Gao, G.; Li, C.; Zhang, Z.M. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102.
|
[13] |
Asplund, A.; Edqvist, P.H.D.; Schwenk, J.M.; Pontén, F. Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research. Proteomics. 2012, 12, 2067–2077.
|
[14] |
Nagy, Á.; Lánczky, A.; Menyhárt, O.; Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep. 2018, 8, 9227.
|
[15] |
Menyhárt, O.; Nagy, Á.; Győrffy, B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. Royal Soc. Open Sci. 2018, 5, 181006.
|
[16] |
Gao, J.J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.C.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1.
|
[17] |
Cerami, E.; Gao, J.J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404.
|
[18] |
Liu, J.F.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; Omberg, L.; Wolf, D.M.; Shriver, C.D.; Thorsson, V. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018, 173, 400–416.e11.
|
[19] |
Yu, G.C.; Wang, L.G.; Han, Y.Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012, 16, 284–287.
|
[20] |
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613.
|
[21] |
Roessler, S.; Jia, H.L.; Budhu, A.; Forgues, M.; Ye, Q.H.; Lee, J.S.; Thorgeirsson, S.S.; Sun, Z.T.; Tang, Z.Y.; Qin, L.X.; Wang, X.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010, 70, 10202–10212.
|
[22] |
Wurmbach, E.; Chen, Y.B.; Khitrov, G.; Zhang, W.J.; Roayaie, S.; Schwartz, M.; Fiel, I.; Thung, S.; Mazzaferro, V.; Bruix, J.; Bottinger, E.; Friedman, S.; Waxman, S.; Llovet, J.M. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007, 45, 938–947.
|
[23] |
Chen, X.; Cheung, S.T.; So, S.; Fan, S.T.; Barry, C.; Higgins, J.; Lai, K.M.; Ji, J.F.; Dudoit, S.; Ng, I.O.L.; van de Rijn, M.; Botstein, D.; Brown, P.O. Gene expression patterns in human liver cancers. Mol. Biol. Cell. 2002, 13, 1929–1939.
|
[24] |
Pereira, J.H.; McAndrew, R.P.; Sergeeva, O.A.; Ralston, C.Y.; King, J.A.; Adams, P.D. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy. Sci. Rep. 2017, 7, 3673.
|
[25] |
Tang, N.H.; Cai, X.L.; Peng, L.R.; Liu, H.K.; Chen, Y.Z. TCP1 regulates Wnt7b/β-catenin pathway through P53 to influence the proliferation and migration of hepatocellular carcinoma cells. Signal Transduct. Target. Ther. 2020, 5, 169.
|
[26] |
Yang, J.P.; Zhang, Z.P.; Zhao, Y.; Cheng, J.Z.; Zhao, C.; Wang, Z.G. CCT α is a novel biomarker for diagnosis of laryngeal squamous cell cancer. Sci. Rep. 2019, 9, 11823.
|
[27] |
Guest, S.T.; Kratche, Z.R.; Bollig-Fischer, A.; Haddad, R.; Ethier, S.P. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp. Cell Res. 2015, 332, 223–235.
|
[28] |
Liu, Y.J.; Chang, Y.J.; Kuo, Y.T.; Liang, P.H. Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis. 2019, 41, 699–710.
|
[29] |
Liu, Y.J.; Kumar, V.; Lin, Y.F.; Liang, P.H. Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis. 2017, 8, e3052.
|
[30] |
Showalter, A.E.; Martini, A.C.; Nierenberg, D.; Hosang, K.; Fahmi, N.A.; Gopalan, P.; Khaled, A.S.; Zhang, W.; Khaled, A.R. Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci. Rep. 2020, 10, 798.
|
[31] |
Chang, Y.X.; Lin, Y.F.; Chen, C.L.; Huang, M.S.; Hsiao, M.; Liang, P.H. Chaperonin-containing TCP-1 promotes cancer chemoresistance and metastasis through the AKT-GSK3β-β-catenin and XIAP-survivin pathways. Cancers. 2020, 12, 3865.
|
[32] |
Qu, H.B.; Zhu, F.; Dong, H.Y.; Hu, X.Q.; Han, M.L. Upregulation of CCT-3 induces breast cancer cell proliferation through miR-223 competition and Wnt/β-catenin signaling pathway activation. Front. Oncol. 2020, 10, 533176.
|
[33] |
Temiz, E.; Koyuncu, İ.; Sahin, E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free. Radic. Biol. Med. 2021, 165, 88–99.
|
[34] |
Cui, X. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 8588.
|
[35] |
Liu, Y.; Zhang, X.; Lin, J.F.; Chen, Y.X.; Qiao, Y.X.; Guo, S.S.; Yang, Y.Y.; Zhu, G.Q.; Pan, Q.H.; Wang, J.Y.; Sun, F.Y. CCT3 acts upstream of YAP and TFCP2 as a potential target and tumour biomarker in liver cancer. Cell Death Dis. 2019, 10, 644.
|
[36] |
Kim, A.R.; Choi, K.W. TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila. Oncogene. 2019, 38, 4739–4754.
|
[37] |
Ryu, H.G.; Kim, S.; Lee, S.; Lee, E.; Kim, H.J.; Kim, D.Y.; Kim, K.T. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J. Neurochem. 2019, 149, 413–426.
|
[38] |
Pavel, M.; Imarisio, S.; Menzies, F.M.; Jimenez-Sanchez, M.; Siddiqi, F.H.; Wu, X.T.; Renna, M.; O’Kane, C.J.; Crowther, D.C.; Rubinsztein, D.C. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun. 2016, 7, 13821.
|
[39] |
Antona, V.; Scalia, F.; Giorgio, E.; Radio, F.C.; Brusco, A.; Oliveri, M.; Corsello, G.; Lo Celso, F.; Vadalà, M.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F.; Giuffrè, M. A novel CCT5 missense variant associated with early onset motor neuropathy. Int. J. Mol. Sci. 2020, 21, 7631.
|
[40] |
Darrow, M.C.; Sergeeva, O.A.; Isas, J.M.; Galaz-Montoya, J.G.; King, J.A.; Langen, R.; Schmid, M.F.; Chiu, W. Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like CCT5 complex explained by cryoelectron tomography. J. Biol. Chem. 2015, 290, 17451–17461.
|
[41] |
He, J.C.; McLaughlin, R.P.; van der Beek, L.; Canisius, S.; Wessels, L.; Smid, M.; Martens, J.W.M.; Foekens, J.A.; Zhang, Y.H.; van de Water, B. Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression. Oncogene. 2020, 39, 4118–4131.
|
[42] |
Zhu, Q.L.; Wang, T.F.; Cao, Q.F.; Zheng, M.H.; Lu, A.G. Inhibition of cytosolic chaperonin CCTζ-1 expression depletes proliferation of colorectal carcinoma in vitro. J. Surg. Oncol. 2010, 102, 419–423.
|
[43] |
Li, B.; Lu, X.G.; Ma, C.; Sun, S.J.; Shu, X.Y.; Wang, Z.Y.; Sun, W.Q. Long non-coding RNA NEAT1 promotes human glioma tumor progression via miR-152-3p/CCT6A pathway. Neurosci. Lett. 2020, 732, 135086.
|
[44] |
Hallal, S.; Russell, B.P.; Wei, H.; Lee, M.Y.T.; Toon, C.W.; Sy, J.; Shivalingam, B.; Buckland, M.E.; Kaufman, K.L. Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics. 2019, 19, e1800157.
|
[45] |
Zhang, T.; Shi, W.; Tian, K.; Kong, Y.S. Chaperonin containing t-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma. World J. Surg. Oncol. 2020, 18, 156.
|
[46] |
Zeng, G.F.; Wang, J.L.; Huang, Y.L.; Lian, Y.F.; Chen, D.M.; Wei, H.; Lin, C.S.; Huang, Y.H. Overexpressing CCT6A contributes to cancer cell growth by affecting the G1-to-S phase transition and predicts A negative prognosis in hepatocellular carcinoma. Oncotargets Ther. 2019, 12, 10427–10439.
|
[47] |
Ying, Z.; Tian, H.; Li, Y.; Lian, R.; Li, W.; Wu, S.S.; Zhang, H.Z.; Wu, J.H.; Liu, L.; Song, J.W.; Guan, H.Y.; Cai, J.C.; Zhu, X.; Li, J.; Li, M.F. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J. Clin. Investig. 2017, 127, 1725–1740.
|
[48] |
Wang, L.W.; Zhou, W.; Li, H.; Yang, H.; Shan, N.C. Clinical significance, cellular function, and potential molecular pathways of CCT7 in endometrial cancer. Front. Oncol. 2020, 10, 1468.
|
[49] |
Lin, X.D.; Lin, N.; Lin, T.T.; Wu, Y.P.; Huang, P.; Ke, Z.B.; Lin, Y.Z.; Chen, S.H.; Zheng, Q.S.; Wei, Y.; Xue, X.Y.; Lin, R.J.; Xu, N. Identification of marker genes and cell subtypes in castration-resistant prostate cancer cells. J. Cancer. 2021, 12, 1249–1257.
|
[50] |
Liu, P.; Kong, L.M.; Jin, H.Y.; Wu, Y.H.; Tan, X.D.; Song, B. Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis. Cancer Cell Int. 2019, 19, 262.
|
[51] |
Yang, X.J.; Ren, H.R.; Shao, Y.H.; Sun, Y.; Zhang, L.H.; Li, H.L.; Zhang, X.L.; Yang, X.M.; Yu, W.W.; Fu, J. Chaperonin-containing T‑complex protein 1 subunit 8 promotes cell migration and invasion in human esophageal squamous cell carcinoma by regulating α-actin and β-tubulin expression. Int. J. Oncol. 2018, 6, 2021–2030.
|
[52] |
Huang, X.D.; Wang, X.X.; Cheng, C.; Cai, J.; He, S.; Wang, H.; Liu, F.; Zhu, C.L.; Ding, Z.M.; Huang, X.T.; Zhang, T.Y.; Zhang, Y.X. Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS. 2014, 122, 1070–1079.
|
[1] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[2] | 刘永军, 陈智金, 张娜*. 新型钆纳米载体在肝靶向分子磁共振显影对比剂中的应用[J]. , 2011, 20(2): 105-117. |
[3] | 王立辉, 曾慧慧*. 创新抗肿瘤药物—乙烷硒啉对小鼠H22肝癌皮下移植瘤的氧化还原状态研究[J]. , 2009, 18(3): 245-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||