中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (1): 46-56.DOI: 10.5246/jcps.2024.01.005
黄荣1, 胡小娇2, 张润芳2, 李晓晖1,*(), 岑娟1,2,*()
收稿日期:
2023-05-25
修回日期:
2023-07-11
接受日期:
2023-08-20
出版日期:
2024-01-31
发布日期:
2024-01-31
通讯作者:
李晓晖, 岑娟
Rong Huang1, Xiaojiao Hu2, Runfang Zhang2, Xiaohui Li1,*(), Juan Cen1,2,*()
Received:
2023-05-25
Revised:
2023-07-11
Accepted:
2023-08-20
Online:
2024-01-31
Published:
2024-01-31
Contact:
Xiaohui Li, Juan Cen
Supported by:
摘要:
反应氧族(ROS)的大量产生是缺血性中风损伤的关键因素。尽管大量研究表明抗氧化剂具有神经保护作用, 然而其长期临床疗效始终差强人意。事实上, ROS在特定浓度下具有促进细胞增殖、促进保护性自噬、激活自身抗氧化能力等积极的生理作用, 在抗氧化干预时尽量保留ROS的优势作用或是解决问题的关键。本研究探索了不同剂量下H2O2对PC12和SH-SY5Y神经细胞增殖、自噬、凋亡等生理病理功能的影响, 检测了相应细胞内及线粒体内ROS的变化规律, 绘制了ROS发挥优势活性的剂量区间。进一步使用自噬抑制剂及信号通路抑制剂等进行研究, 结果表明100 μM的H2O2可通过AKT/m-TOR介导的HIF-1α和TFEB信号激活保护性自噬, 从而实现神经细胞的保护作用。本研究揭示了ROS发挥优势作用的浓度范围, 并阐明了其神经保护机制, 为全面优化脑缺血后抗氧化剂的使用提供了重要参考。
Supporting:
黄荣, 胡小娇, 张润芳, 李晓晖, 岑娟. 反应氧族促进神经保护的量效关系及其机制研究[J]. 中国药学(英文版), 2024, 33(1): 46-56.
Rong Huang, Xiaojiao Hu, Runfang Zhang, Xiaohui Li, Juan Cen. Study on the dose-effect relationship and mechanism of reactive oxygen species promoted neuroprotection[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(1): 46-56.
Figure 1. The viability of neuron cells was influenced by different levels of ROS in a concentration-dependent manner. (A) Incubation with H2O2 demonstrated a concentration- and time-dependent increase, with no toxic effects observed on the cell viability of PC12 cells; (B) Microscopy observations revealed morphological changes in PC12 cells at various H2O2 concentrations (200× magnification); (C) Similarly, concentration-dependent incubation with H2O2 showed no toxicity to toxic effects on the cell viability of SH-SY5Y cells; (D) Microscopy observations depicted morphological changes in SH-SY5Y cells at different H2O2 concentrations (200× magnification). The data are presented as mean ± SD (n = 3). **P < 0.01, ***P < 0.001 vs. the control group.
Figure 2. Treatment with H2O2 at various concentrations resulted in changes in intracellular ROS levels in neuron cells. Cells were treated with the specified concentrations of H2O2 for 6 h and then stained with DCFH-DA according to the instructions. Flow cytometry was utilized to analyze the intracellular ROS content. The data are presented as mean ± SD (n = 3). *P < 0.05, ***P < 0.001 vs. the control group.
Figure 3. Treatment with H2O2 at different concentrations led to an increase in mitochondrial ROS content in a concentration-dependent manner. Cells were treated with the specified concentrations of H2O2 for 6 h and then stained with MitoSOX according to the instructions. Flow cytometry was utilized to analyze the mitochondrial ROS content. The data are presented as mean ± SD (n = 3). **P < 0.01, ***P < 0.001 vs. the control group.
Figure 4. The proliferation ability of cells displayed a specific concentration-dependent response to H2O2. Cells were treated with various concentrations of H2O2 for 6 h, followed by staining with Ki67 antibody according to the provided instructions. Flow cytometry was utilized to analyze the percentage of Ki67+ cells. The data are presented as mean ± SD (n = 3). **P < 0.01, ***P < 0.001 vs. the control group.
Figure 5. H2O2 induced a concentration-dependent increase in mitophagy in PC12 and SH-SY5Y cells. Cells were treated with different concentrations of H2O2 for 6 h, followed by staining with PINK1 antibody according to the provided instructions. Flow cytometry was utilized to analyze the percentage of PINK1+ cells. The data are presented as mean ± SD (n = 3). **P < 0.01, ***P < 0.001 vs. the control group.
Figure 6. H2O2 induced a concentration-dependent increase in the apoptosis rate of PC12 and SH-SY5Y cells. Cells were treated with different concentrations of H2O2 for 6 h, followed by staining with Annexin V/PI double stain agents according to the provided instructions. Flow cytometry was used to analyze the apoptosis rate. The data are presented as mean ± SD (n = 3). **P < 0.01 vs. the control group.
Figure 7. Moderate levels of ROS activated mitophagy and provided neuroprotection in PC12 and SH-SY5Y cells. However, when autophagy inhibitor 3-MA or mitophagy inhibitor Mdivi-1 was applied, cell injury was induced even after treatment with a subtoxic concentration of H2O2 at 100 μM. Cells were pretreated with or without 5 mM 3-MA or 20 μM Mdivi-1 for 2 h, followed by incubation with the indicated concentration of H2O2 for an additional 6 h. Afterward, the cells were collected and subjected to the MTT assay. The data are expressed as mean ± SD (n = 3). Statistical analysis showed that ***P < 0.001 as vs. the control group, indicating significant differences between the groups.
Figure 8. The AKT/mTOR-mediated HIF-1α and TFEB signaling pathways were found to be involved in H2O2-induced mitophagy in PC12 and SH-SY5Y cells. (A) Changes in protein levels were observed in whole cells for p-Akt, Akt, p-mTOR, mTOR, HIF-1α, TFEB, and P-gp, as well as in the nucleus for HIF-1α and TFEB; (B) Inhibitors targeting HIF-1α and TFEB led to a decrease in cell viability in SH-SY5Y cells; (C) Treatment with inhibitors of HIF-1α and TFEB resulted in a reduction in H2O2-induced mitophagy activation. SH-SY5Y cells were pretreated with 100 μM YC-1, 10 μM CCI-779, 50 μM LY294002, and 400 nM Rapamycin for 2 h, followed by treatment with or without 50, 100, or 200 μM H2O2 for an additional 6 h. Western blotting analysis and MTT assay were performed using the collected cells. The data are presented as mean ± SD (n = 3). Statistical significance is denoted as *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control group; &P < 0.05, &&P < 0.01, &&&P < 0.001 vs. 100 μM H2O2 treatment group.
[1] |
Alawieh, A.; Langley, E.F.; Tomlinson, S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci. Transl. Med. 2018, 10, eaao6459.
|
[2] |
Campbell, B.C.V.; Ma, H.; Parsons, M.W.; Churilov, L.; Yassi, N.; Kleinig, T.J.; Hsu, C.Y.; Dewey, H.M.; Butcher, K.S.; Yan, B.; Desmond, P.M.; Wijeratne, T.; Curtze, S.; Barber, P.A.; De Silva, D.A.; Thijs, V.; Levi, C.R.; Bladin, C.F.; Sharma, G.; Bivard, A.; Donnan, G.A.; Davis, S.M. Association of reperfusion after thrombolysis with clinical outcome across the 4.5- to 9-hours and wake-up stroke time window: a meta-analysis of the EXTEND and EPITHET randomized clinical trials. JAMA Neurol. 2021, 78, 236–240.
|
[3] |
Hong, Q.; Wang, Z.H.; Yang, Y.; Gao, L.; Yan Z. DGMI alleviates OGD/R-induced cell injury by regulating inflammatory and apoptosis signaling pathways. J. Chin. Pharm. Sci. 2020, 29, 455–469.
|
[4] |
Haupt, M.; Gerner, S.T.; Bähr, M.; Doeppner, T.R. Quest for quality in translational stroke research—a new dawn for neuroprotection? Int. J. Mol. Sci. 2022, 23, 5381.
|
[5] |
Guo, L.; Pan, J.L.; Li, F.; Zhao, L.; Shi, Y.J. A novel brain targeted plasma exosomes enhance the neuroprotective efficacy of edaravone in ischemic stroke. IET Nanobiotechnol. 2021, 15, 107–116
|
[6] |
Shabani, M.; Jamali, Z.; Bayrami, D.; Salimi, A. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC Pharmacol. Toxicol. 2023, 24, 33.
|
[7] |
Förstermann, U.; Xia, N.; Li, H.G. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 2017, 120, 713–735.
|
[8] |
Hervera, A.; De Virgiliis, F.; Palmisano, I.; Zhou, L.M.; Tantardini, E.; Kong, G.P.; Hutson, T.; Danzi, M.C.; Perry, R.B.T.; Santos, C.X.C.; Kapustin, A.N.; Fleck, R.A.; Del Río, J.A.; Carroll, T.; Lemmon, V.; Bixby, J.L.; Shah, A.M.; Fainzilber, M.; Di Giovanni, S. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 2018, 20, 307–319.
|
[9] |
Cen, J.; Zhao, N.; Huang, W.W.; Liu, L.; Xie, Y.Y.; Gan, Y.; Wang, C.J.; Ji, B.S. Polyamine analogue QMA attenuated ischemic injury in MCAO rats via ERK and Akt activated Nrf2/HO-1 signaling pathway. Eur. J. Pharmacol. 2019, 844, 165–174.
|
[10] |
Zhang, R.F.; Zhao, T.K.; Zheng, B.B.; Zhang, Y.; Li, X.H.; Zhang, F.; Cen, J.A.; Duan, S.F. Curcumin derivative Cur20 attenuated cerebral ischemic injury by antioxidant effect and HIF-1α/VEGF/TFEB-activated angiogenesis. Front. Pharmacol. 2021, 12, 648107.
|
[11] |
Zhao, Y.M.; Yan, F.; Yin, J.; Pan, R.; Shi, W.J.; Qi, Z.F.; Fang, Y.L.; Huang, Y.Y.; Li, S.; Luo, Y.M.; Ji, X.M.; Liu, K.J. Synergistic Interaction Between Zinc and Reactive Oxygen Species Amplifies Ischemic Brain Injury in Rats. Stroke. 2018, 49, 2200–2210.
|
[12] |
Cen, J.A.; Zhang, L.; Liu, F.F.; Zhang, F.; Ji, B.S. Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells. Oxid. Med. Cell Longev. 2016, 2016, 1–15.
|
[13] |
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383.
|
[14] |
Cen, J.; Zhang, R.F.; Zhao, T.K.; Zhang, X.; Zhang, C.; Cui, J.; Zhao, K.Q.; Duan, S.F.; Guo, Y.Q. A water-soluble quercetin conjugate with triple targeting exerts neuron-protective effect on cerebral ischemia by mitophagy activation. Adv. Healthc. Mater. 2022, 11, e2200817.
|
[15] |
Forman, H.J.; Zhang, H.Q. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709.
|
[16] |
Cen, J.; Jia, Z.L.; Zhu, C.Y.; Wang, X.F.; Zhang, F.; Chen, W.Y.; Liu, K.C.; Li, S.Y.; Zhang, Y. Particulate matter (PM10) induces cardiovascular developmental toxicity in zebrafish embryos and larvae via the ERS, Nrf2 and Wnt pathways. Chemosphere. 2020, 250, 126288.
|
[17] |
Cen, J.; Zheng, B.B.; Bai, R.; Zhang, L.; Zhang, F.; Zhang, X. Triterpenoids from Aglaia abbreviata exert cytotoxicity and multidrug resistant reversal effect in MCF-7/ADM cells via reactive oxygen species induction and P-glycoprotein inhibition. Oncotarget. 2017, 8, 69465–69476.
|
[18] |
Jia, Z.L.; Cen, J.; Wang, J.B.; Zhang, F.; Xia, Q.; Wang, X.; Chen, X.Q.; Wang, R.C.; Hsiao, C.D.; Liu, K.C.; Zhang, Y. Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere. 2019, 227, 541–550.
|
[19] |
Zhang, D.W.; Mei, L.; Long, R.C.; Cui, C.; Sun, Y.; Wang, S.; Xia, Z.Y. RiPerC attenuates cerebral ischemia injury through regulation of miR-98/PIK3IP1/PI3K/AKT signaling pathway. Oxidative Med. Cell Longev. 2020, 2020, 1–12.
|
[20] |
Liu, H.Y.; Zhu, H.; Li, T.; Zhang, P.F.; Wang, N.; Sun, X.D. Prolyl-4-hydroxylases inhibitor stabilizes HIF-1α and increases mitophagy to reduce cell death after experimental retinal detachment. Invest. Ophthalmol. Vis. Sci. 2016, 57, 1807.
|
[21] |
Kopach, O.; Maistrenko, A.; Lushnikova, I.; Belan, P.; Skibo, G.; Voitenko, N. HIF-1α-mediated upregulation of SERCA2b: the endogenous mechanism for alleviating the ischemia-induced intracellular Ca2+ store dysfunction in CA1 and CA3 hippocampal neurons. Cell Calcium. 2016, 59, 251–261.
|
[22] |
Tang, Y.B.; Liu, Y.F.; Zhou, H.Z.; Lu, H.B.; Zhang, Y.F.; Hua, J.; Liao, X.Z. Esketamine is neuroprotective against traumatic brain injury through its modulation of autophagy and oxidative stress via AMPK/mTOR-dependent TFEB nuclear translocation. Exp. Neurol. 2023, 366, 114436.
|
[23] |
Dassati, S.; Schweigreiter, R.; Buechner, S.; Waldner, A. Celecoxib promotes survival and upregulates the expression of neuroprotective marker genes in two different in vitro models of Parkinson’s disease. Neuropharmacology. 2021, 194, 108378.
|
[24] |
Zhang, X.; Wei, M.P.; Fan, J.H.; Yan, W.J.; Zha, X.; Song, H.M.; Wan, R.Q.; Yin, Y.L.; Wang, W. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy. 2021, 17, 1519–1542.
|
[1] | 杨滢霖, 张姗姗, 刘漫, 刘冬妮, 王月华, 杜冠华. 小续命汤抗缺血性脑卒中网络药理学分析及其抗炎和神经血管保护机制的体内验证[J]. 中国药学(英文版), 2022, 31(5): 343-359. |
[2] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[3] | 商燕, 蔺晓源, 张田田, 谢丽华, 胡国恒. 基于网络药理学和分子对接探讨益气活血方抗脑缺血机制研究[J]. 中国药学(英文版), 2022, 31(2): 117-133. |
[4] | 杨滢霖, 张姗姗, 刘漫, 王月华, 杜冠华. 小续命汤提取物改善血栓性局灶性脑缺血大鼠脑损伤及利用蛋白质组学探讨其可能治疗靶点[J]. 中国药学(英文版), 2021, 30(6): 468-483. |
[5] | 洪倩, 王增慧, 杨阳, 高璐, 闫兆. 银杏二萜内酯葡胺注射液通过调控炎症和凋亡信号通路减轻OGD/R诱导的细胞损伤[J]. 中国药学(英文版), 2020, 29(7): 455-469. |
[6] | 王圣鑫, 闫向丽, 郑昊圳, 余健烨, 余爱明, 沈晓, 王利胜. 微透析技术结合液质联用的不同剂量黄芪的补阳还五汤在脑缺血损伤大鼠脑药动学研究[J]. 中国药学(英文版), 2020, 29(2): 90-101. |
[7] | 赵思育, 刘晓岩, 朱元军, 刘晔, 王银叶. 具有脑保护作用的化合物W026B的蛋白质组学研究和靶点发现[J]. 中国药学(英文版), 2019, 28(6): 381-392. |
[8] | 于快, 李茹一, 朱元军, 刘晓岩, 王银叶. 针对脑缺血再灌注损伤设计的双功能蛋白的脑保护作用优于单功能蛋白[J]. 中国药学(英文版), 2019, 28(11): 760-769. |
[9] | 庞雨浓, 梁英文, 王玉刚, 雷帆, 袁梽漪, 邢东明, 李俊, 杜力军. 小檗碱通过调节PPARγ启动子甲基化对缺血再灌注脑损伤的作用[J]. 中国药学(英文版), 2018, 27(3): 170-182. |
[10] | 张烨, 郑丹萍, 水梦洋, 刘晔, 刘晓岩, 王银叶. 新化合物W026B通过抑制炎性细胞因子的产生减轻缺血性脑损伤, 与tPA合用作用增强[J]. 中国药学(英文版), 2018, 27(10): 675-685. |
[11] | 尹成, 王杰, 徐沛, 颜丙春. 薯蓣皂苷通过降低胶质细胞活化及维持SOD水平减轻脑卒中小鼠的神经损伤[J]. 中国药学(英文版), 2017, 26(9): 684-691. |
[12] | 张精亮, 胡涛, 刘晓岩, 朱元军, 陈晓玲, 刘晔, 王银叶. 002C-3通过抑制MMPs和细胞自噬并激活细胞存活相关的钙信号通路保护小鼠脑缺血再灌注损伤[J]. 中国药学(英文版), 2016, 25(8): 598-604. |
[13] | 刘晓岩, 胡振宇, 陈世忠, 王坚成, 王银叶. 口服和厚朴酚对大鼠脑缺血再灌注(I-R)损伤和SHRsp脑卒中的保护作用[J]. 中国药学(英文版), 2016, 25(12): 882-891. |
[14] | 张精亮, 胡涛, 刘晓岩, 朱元军, 王银叶. 多成分、多途径同时干预提供强效抗脑缺血作用[J]. 中国药学(英文版), 2014, 23(5): 295-301. |
[15] | 何冰, 陈小夏, 陈一岳. 茶多酚对脑缺血再灌注损伤的保护作用及在体外抗脂质过氧化和清除自由基作用[J]. , 2002, 11(4): 157-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||