中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (2): 117-133.DOI: 10.5246/jcps.2022.02.010
商燕1,2, 蔺晓源2, 张田田1,2, 谢丽华1,2, 胡国恒1,2,*()
收稿日期:
2021-09-18
修回日期:
2021-09-25
接受日期:
2021-10-29
出版日期:
2022-02-27
发布日期:
2022-02-25
通讯作者:
胡国恒
作者简介:
基金资助:
Yan Shang1,2, Xiaoyuan Lin2, Tiantian Zhang1,2, Lihua Xie1,2, Guoheng Hu1,2,*()
Received:
2021-09-18
Revised:
2021-09-25
Accepted:
2021-10-29
Online:
2022-02-27
Published:
2022-02-25
Contact:
Guoheng Hu
摘要:
脑缺血(cerebral ischemia, CI)具有高发病率、高致畸率, 是全球第二大致死疾病。中药(traditional Chinese medicine, TCM)益气活血方(YQHX)在临床治疗CI发挥一定疗效, 但其机制尚不清楚。本文基于网络药理学和分子对接探讨其作用机制。通过TCMSP和CNKI数据库获取益气活血方活性成分; 利用Pharmmapper数据库获得成分靶点信息; 检索OMIM、GeneCards、DisGeNET数据库得到脑缺血的疾病靶点; Venn图得到交集靶点, Cytoscape可视化结果, 插件MCODE获得核心靶点; 使用Metascape数据库对核心靶点进行GO和KEGG通路富集分析; 选取前20条KEGG通路富集通路用Cytoscape构建 "成分-靶点-通路"图; 排名前10的成分与前5的靶点信息, 利用AutoDock Vina软件进行分子对接验证, 用PyMoL、Ligplus软件可视化结果。筛选得到益气活血方活性成分83个, 相应靶点432个, 疾病相关靶点2005个, 药物与疾病的交集靶点140个; 通过GO生物功能分析和KEGG通路富集分析得到507 条生物功能条目及141条信号通路。KEGG通路富集分析主要参与细胞增殖、粘附、迁移等过程; 分子对接结果显示, 筛选的关键成分与核心靶点皆具备较强的结合活性, 其中EGFR、MAP2K1、KDR与丹参新酮I、丹参酮二酚结合较为稳定。益气活血方治疗脑缺血主要生物学机制可能通过酪氨酸激酶受体相关的信号通路发挥作用, 也是对中医"益气活血, 血脉新生"理论的完善。
Supporting:
商燕, 蔺晓源, 张田田, 谢丽华, 胡国恒. 基于网络药理学和分子对接探讨益气活血方抗脑缺血机制研究[J]. 中国药学(英文版), 2022, 31(2): 117-133.
Yan Shang, Xiaoyuan Lin, Tiantian Zhang, Lihua Xie, Guoheng Hu. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 117-133.
Figure 3. Network diagram of YQHX components and pharmacodynamic targets.The pink nodes represent Ligusticum wallichii, the light blue nodes represent Salvia miltiorrhiza, the purple nodes represent the Angelica sinensis, the green nodes represent Astragalus mongholicus, the yellow nodes represent the common ingredients, the node shape size represents the number of interactions.
Figure 4. PPI network diagram of protein targets of YQHX. The circle nodes represent the protein targets, and the circle size and color depth represents the protein interaction of the targets.
Figure 5. Top 10 BP, CC, MF of GO enrichment analysis. The Y-axis of A is sorted by gene enrichment; the Y-axis of B is sorted by P value, and the X-axis indicates go enrichment items.
Figure 6. Top 20 pathways of KEGG pathway enrichment analysis. The X-axis represents the number of genes enriched to a specific pathway; the Y-axis represents the classification of pathways.
Figure 8. The ingredients-targets-pathways network of YQHX. Octagonal nodes represent components, rhombic nodes represent protein targets, square nodes represent pathways, and the size and color of nodes represent the number of interactions.
Figure 9. Molecular docking diagram of YQHX components and key targets. A is miltionone I and EGFR, B is miltiodiol and MAP2K1, C is miltiodiol and KDR; A1/A2, B1/B2, C1/C2 is PyMOL 3D, A3, B3, C3 is ligplus 2D; dotted line is hydrogen bond connection.
[1] |
Tu, X.S. Study on epidemiological pathology of ischemic stroke. China Clin. Neurosci. 2016, 05, 594–599.
|
[2] |
Le, J.H.; Wang, J.X.; Hu, G.H. Effect of Yiqi Live Blood Form on Proliferation, Migration and Adhesion of Rat Branus Source of Rats. Trigration and Adhesion. 2018, 24, 21–25.
|
[3] |
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics. 2014, 6, 13.
|
[4] |
Wang, X.; Shen, Y.H.; Wang, S.W.; Li, S.L.; Zhang, W.L.; Liu, X.F.; Lai, L.H.; Pei, J.F.; Li, H.L. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017, 45, W356–W360.
|
[5] |
von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33, D433–D437.
|
[6] |
Zhou, Y.Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.
|
[7] |
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, NA.
|
[8] |
Yang, Z.F.; Yang, X.Y.; Chen, Y.F. "Control Network" and mechanism for treating cerebral infarction. Chin. J. Tradit. Chin. Med. 2020, 35,149–154.
|
[9] |
Zhang, J.L.; Li, Y.; Wang, W.J. Mechanism of Dan Ginseng-Danpi Computed with Broken Deficiency Damage Based on Network Pharmacology. J. Nat. Prod. Res. Dev. 2021, 33, 103–113+149.
|
[10] |
Tang, X.S.; Chen, J.; Zhang, Q.H. Mechanism of Astragalus Treatment of Ischemic Stroke Based on Network Pharmacology. Chin. J. Tradit. Chin. Med. 2020, 1–12.
|
[11] |
Fan, Q.M.; Yang, Y.T.; Xiao, M.F. Study on the interaction of the 5th soup ingredients and ischemic strokes based on molecular docking technology. Chin. Herbal Med. 2019, 50, 4200–4208.
|
[12] |
Zhang, Y.M.; Qu, X.Y.; Tao, L.N.; Zhai, J.H.; Gao, H.; Song, Y.Q.; Zhang, S.X. XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition. Pharm. Biol. 2020, 58, 16–24.
|
[13] |
Zhou, D.R.; Xie, L.D.; Wang, Y.; Wu, S.; Liu, F.Z.; Zhang, S.S.; Liu, R.J.; Zhu, L.Q. Clinical efficacy of tonic traditional Chinese medicine injection on acute cerebral infarction: a Bayesian network meta-analysis. Evid. Based Complement. Alternat. Med. 2020, 2020, 1–12.
|
[14] |
Luo, L.; Wu, S.L.; Chen, R.Q.; Rao, H.Y.; Peng, W.; Su, W.W. The study of neuroprotective effects and underlying mechanism of Naoshuantong capsule on ischemia stroke mice. Chin. Med. 2020, 15, 119.
|
[15] |
Victoria, E.C.G.; Toscano, E.C.D.B.; Oliveira, F.M.S.; de de Carvalho, B.A.; Caliari, M.V.; Teixeira, A.L.; de Miranda, A.S.; Rachid, M.A. Up-regulation of brain cytokines and metalloproteinases 1 and 2 contributes to neurological deficit and brain damage in transient ischemic stroke. Microvasc. Res. 2020, 129, 103973.
|
[16] |
Yu, H.H. The role and mechanism of glycyridine by estrogen receptor inhibiting small colloidal cell coke death. J. Xinxiang Med. Coll. 2020.
|
[17] |
Casingal, C.R.; Kikkawa, T.; Inada, H.; Sasaki, Y.; Osumi, N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis. Mol. Brain. 2020, 13, 167.
|
[18] |
Ong, T.; Trivedi, N.; Wakefield, R.; Frase, S.; Solecki, D.J. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. Nat. Commun. 2020, 11, 5312.
|
[19] |
Ling, Y.; Jin, L.; Ma, Q.X.; Huang, Y.; Yang, Q.Q.; Chen, M.L.; Shou, Q.Y. Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion. Phytomedicine. 2021, 87, 153569.
|
[20] |
Liu, C.D.; Liu, N.N.; Zhang, S.; Ma, G.D.; Yang, H.G.; Kong, L.L.; Du, G.H. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol. Sin. 2021, 42, 370–381.
|
[21] |
Zhao, J.; Li, L.; Fang. G.L. Salvianolic acid A attenuates cerebral ischemia/reperfusion injury induced rat brain damage, inflammation and apoptosis by regulating miR-499a/DDK1. Am. J. Transl. Res. 2020, 12, 3288–3301.
|
[22] |
Tang, B.; She, X.; Deng, C.Q. Effect of the combination of astragaloside IV and Panax notoginseng saponins on pyroptosis and necroptosis in rat models of cerebral ischemia-reperfusion. Exp. Ther. Med. 2021, 22, 1123.
|
[23] |
Shi, Y.H.; Zhang, X.L.; Ying, P.J.; Wu, Z.Q.; Lin, L.L.; Chen, W.; Zheng, G.Q.; Zhu, W.Z. Neuroprotective effect of astragaloside IV on cerebral ischemia/reperfusion injury rats through Sirt1/mapt pathway. Front. Pharmacol. 2021, 12, 639898. DOI:10.3389/fphar.2021.639898.
|
[24] |
Zheng, X.T.; Gan, H.Y.; Li, L.; Hu, X.W.; Fang, Y.; Chu, L.S. Astragaloside IV inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization. J. Zhejiang Med. Univ. 2020, 49, 679–686.
|
[25] |
Song, Z.; Feng, J.; Zhang, Q.; Deng, S.; Yu, D.; Zhang, Y.; Li, T. Tanshinone IIA protects against cerebral ischemia reperfusion injury by regulating microglial activation and polarization via NF-κB pathway. Front. Pharmacol. 2021, 12, 641848.
|
[26] |
Wang, J.; Ni, G.X.; Liu, Y.M.; Han, Y.; Jia, L.; Wang, Y.L. Tanshinone IIA promotes axonal regeneration in rats with focal cerebral ischemia through the inhibition of nogo-A/NgR1/RhoA/ROCKII/MLC signaling. Drug Des. Dev. Ther. 2020, 14, 2775–2787.
|
[27] |
Yao, K.; Yang, Q.; Li, Y.; Lan, T.; Yu, H.; Yu, Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One. 2020, 15, e0228825.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[8] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[9] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[10] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[11] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[12] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[13] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[14] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[15] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||