[1] |
Zhong, Y.F.; Lee, K.; He, J.C. SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front. Endocrinol. 2018, 9, 624.
|
[2] |
Xue, R.; Gui, D.K.; Zheng, L.Y.; Zhai, R.N.; Wang, F.; Wang, N.S. Mechanistic insight and management of diabetic nephropathy: recent progress and future perspective. J. Diabetes Res. 2017, 2017, 1839809.
|
[3] |
Sun, G.D.; Li, C.Y.; Cui, W.P.; Guo, Q.Y.; Dong, C.Q.; Zou, H.B.; Liu, S.J.; Dong, W.P.; Miao, L.N. Review of herbal traditional Chinese medicine for the treatment of diabetic nephropathy. J. Diabetes Res. 2016, 2016, 5749857.
|
[4] |
de Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011, 305, 2532–2539.
|
[5] |
Jiang, G.Z.; Luk, A.O.Y.; Tam, C.H.T.; Xie, F.Y.; Carstensen, B.; Lau, E.S.H.; Lim, C.K.P.; Lee, H.M.; Ng, A.C.W.; Ng, M.C.Y.; Ozaki, R.; Kong, A.P.S.; Chow, C.C.; Yang, X.L.; Lan, H.Y.; Tsui, S.K.W.; Fan, X.D.; Szeto, C.C.; So, W.Y.; Chan, J.C.N.; Ma, R.C.W. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int. 2019, 95, 178–187.
|
[6] |
de Zeeuw, D.; Renfurm, R.W.; Bakris, G.; Rossing, P.; Perkovic, V.; Hou, F.F.; Nangaku, M.; Sharma, K.; Heerspink, H.J.L.; Garcia-Hernandez, A.; Larsson, T.E. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2018, 6, 925–933.
|
[7] |
Doshi, S.M.; Friedman, A.N. Diagnosis and management of type 2 diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1366–1373.
|
[8] |
Mauer, M.; Zinman, B.; Gardiner, R.; Suissa, S.; Sinaiko, A.; Strand, T.; Drummond, K.; Donnelly, S.; Goodyer, P.; Gubler, M.C.; Klein, R. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 2009, 361, 40–51.
|
[9] |
Tang, G.Y.; Li, S.; Zhang, C.; Chen, H.Y.; Wang, N.; Feng, Y.B. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B. 2021, 11, 2749–2767.
|
[10] |
Luan, R.Q.; Zhao, P.; Zhang, X.L.; Li, Q.Q.; Chen, X.F.; Wang, L. Pharmacodynamics, pharmacokinetics, and kidney distribution of raw and wine-steamed ligustri lucidi fructus extracts in diabetic nephropathy rats. Molecules. 2023, 28, 791.
|
[11] |
Wang, H.; Huang, X.M.; Xu, P.F.; Liu, X.J.; Zhou, Z.H.; Wang, F.H.; Li, J.Y.; Wang, Y.H.; Xian, X.D.; Liu, G.; Huang, W. Apolipoprotein C3 aggravates diabetic nephropathy in type 1 diabetes by activating the renal TLR2/NF-κB pathway. Metabolism. 2021, 119, 154740.
|
[12] |
Jiao, Y.Y.; Jiang, S.M.; Wang, Y.; Yu, T.Y.; Zou, G.M.; Zhuo, L.; Li, W.G. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: evidence from transcriptomic data and renal histopathology. J. Diabetes Investig. 2022, 13, 839–849.
|
[13] |
Tang, S.M.; Wang, X.F.; Deng, T.C.; Ge, H.P.; Xiao, X.C. Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis. Sci. Rep. 2020, 10, 13468.
|
[14] |
Jiao, Y.Y.; Jiang, S.M.; Wang, Y.; Yu, T.Y.; Zou, G.M.; Zhuo, L.; Li, W.G. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: evidence from transcriptomic data and renal histopathology. J. Diabetes Investig. 2022, 13, 839–849.
|
[15] |
Wilkening, A.; Krappe, J.; Mühe, A.M.; Lindenmeyer, M.T.; Eltrich, N.; Luckow, B.; Vielhauer, V. C-C chemokine receptor type 2 mediates glomerular injury and interstitial fibrosis in focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2020, 35, 227–239.
|
[16] |
Feng, Y.; Zhong, X.; Ni, H.F.; Wang, C.; Tang, T.T.; Wang, L.T.; Song, K.Y.; Tang, R.N.; Liu, H.; Liu, B.C.; Lv, L.L. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy. J. Transl. Med. 2021, 19, 355.
|
[17] |
Chang, T.T.; Chen, J.W. The role of chemokines and chemokine receptors in diabetic nephropathy. Int. J. Mol. Sci. 2020, 21, 3172.
|
[18] |
Rayego-Mateos, S.; Morgado-Pascual, J.L.; Opazo-Ríos, L.; Guerrero-Hue, M.; García-Caballero, C.; Vázquez-Carballo, C.; Mas, S.; Sanz, A.B.; Herencia, C.; Mezzano, S.; Gómez-Guerrero, C.; Moreno, J.A.; Egido, J. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int. J. Mol. Sci. 2020, 21, 3798.
|
[19] |
Moreno, J.A.; Gomez-Guerrero, C.; Mas, S.; Sanz, A.B.; Lorenzo, O.; Ruiz-Ortega, M.; Opazo, L.; Mezzano, S.; Egido, J. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin. Investig. Drugs. 2018, 27, 917–930.
|
[20] |
Lu, J.; Chen, P.P.; Zhang, J.X.; Li, X.Q.; Wang, G.H.; Yuan, B.Y.; Huang, S.J.; Liu, X.Q.; Jiang, T.T.; Wang, M.Y.; Liu, W.T.; Ruan, X.Z.; Liu, B.C.; Ma, K.L. GPR43 activation-mediated lipotoxicity contributes to podocyte injury in diabetic nephropathy by modulating the ERK/EGR1 pathway. Int. J. Biol. Sci. 2022, 18, 96–111.
|
[21] |
Dai, X.; Liao, R.Y.; Liu, C.Q.; Liu, S.; Huang, H.Y.; Liu, J.J.; Jin, T.R.; Guo, H.H.; Zheng, Z.H.; Xia, M.; Ling, W.H.; Xiao, Y.J. Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol. 2021, 45, 102033.
|
[22] |
Hirohama, D.; Abedini, A.; Moon, S.; Surapaneni, A.; Dillon, S.T.; Vassalotti, A.; Liu, H.B.; Doke, T.; Martinez, V.; Dom, Z.M.; Karihaloo, A.; Palmer, M.B.; Coresh, J.; Grams, M.E.; Niewczas, M.A.; Susztak, K. Unbiased human kidney tissue proteomics identifies matrix metalloproteinase 7 as a kidney disease biomarker. J. Am. Soc. Nephrol. 2023, 34, 1279–1291.
|
[23] |
Ke, B.; Fan, C.; Yang, L.; Fang, X. Matrix metalloproteinases-7 and kidney fibrosis. Physiol. 2017, 8, 21.
|
[24] |
Fu, H.Y.; Zhou, D.; Zhu, H.L.; Liao, J.L.; Lin, L.; Hong, X.; Hou, F.F.; Liu, Y.H. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int. 2019, 95, 1167–1180.
|
[25] |
Xu, Q.N.; Li, B.J.; Wang, Y.C.; Wang, C.L.; Feng, S.; Xue, L.; Chen, J.H.; Jiang, H. Identification of VCAN as hub gene for diabetic kidney disease immune injury using integrated bioinformatics analysis. Front. Physiol. 2021, 12, 651690.
|
[26] |
Zhang, Y.; Ma, K.L.; Gong, Y.X.; Wang, G.H.; Hu, Z.B.; Liu, L.; Lu, J.; Chen, P.P.; Lu, C.C.; Ruan, X.Z.; Liu, B.C. Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J. Am. Soc. Nephrol. 2018, 29, 2671–2695.
|
[27] |
Yu, M.X.; Xie, R.J.; Zhang, Y.; Liang, H.; Hou, L.; Yu, C.Y.; Zhang, J.M.; Dong, Z.X.; Tian, Y.; Bi, Y.Y.; Kou, J.J.; Novakovic, V.A.; Shi, J.L. Phosphatidylserine on microparticles and associated cells contributes to the hypercoagulable state in diabetic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 2115–2127.
|
[28] |
van den Berg, B.M.; Wang, G.; Boels, M.G.S.; Avramut, M.C.; Jansen, E.; Sol, W.M.P.J.; Lebrin, F.; van Zonneveld, A.J.; de Koning, E.J.P.; Vink, H.; Gröne, H.J.; Carmeliet, P.; van der Vlag, J.; Rabelink, T.J. Glomerular function and structural integrity depend on hyaluronan synthesis by glomerular endothelium. J. Am. Soc. Nephrol. 2019, 30, 1886–1897.
|
[29] |
Li, Y.J.; Chen, X.C.; Kwan, T.K.; Loh, Y.W.; Singer, J.; Liu, Y.Z.; Ma, J.; Tan, J.; Macia, L.; MacKay, C.R.; Chadban, S.J.; Wu, H.L. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020, 31, 1267–1281.
|
[30] |
Lee, J.H.; Kim, D.; Oh, Y.S.; Jun, H.S. Lysophosphatidic acid signaling in diabetic nephropathy. Int. J. Mol. Sci. 2019, 20, 2850.
|
[31] |
Xiao, H.M.; Sun, X.H.; Liu, R.B.; Chen, Z.Q.; Lin, Z.Y.; Yang, Y.; Zhang, M.; Liu, P.Q.; Quan, S.J.; Huang, H.Q. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol. Res. 2020, 151, 104559.
|
[32] |
Madhusudhan, T.; Ghosh, S.; Wang, H.J.; Dong, W.; Gupta, D.; Elwakiel, A.; Stoyanov, S.; Al-Dabet, M.M.; Krishnan, S.; Biemann, R.; Nazir, S.; Zimmermann, S.; Mathew, A.; Gadi, I.; Rana, R.; Zeng-Brouwers, J.; Moeller, M.J.; Schaefer, L.; Esmon, C.T.; Kohli, S.; Reiser, J.; Rezaie, A.R.; Ruf, W.; Isermann, B. Podocyte integrin- β3 and activated protein C coordinately restrict RhoA signaling and ameliorate diabetic nephropathy. J. Am. Soc. Nephrol. 2020, 31, 1762–1780.
|
[33] |
Chen, X.W.; Tan, H.S.; Xu, J.; Tian, Y.; Yuan, Q.; Zuo, Y.Y.; Chen, Q.Y.; Hong, X.; Fu, H.Y.; Hou, F.F.; Zhou, L.L.; Liu, Y.H. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney Int. 2022, 102, 506–520.
|
[34] |
Sun, H.; Li, H.; Yan, J.; Wang, X.D.; Xu, M.Y.; Wang, M.X.; Fan, B.Z.; Liu, J.Y.; Lin, N.H.; Wang, X.; Li, L.; Zhao, S.T.; Gong, Y.F. Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. Nat. Commun. 2022, 13, 1600.
|
[35] |
Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 206–222.
|