中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (9): 831-849.DOI: 10.5246/jcps.2025.09.061
收稿日期:
2025-03-20
修回日期:
2025-04-17
接受日期:
2025-05-11
出版日期:
2025-10-02
发布日期:
2025-10-02
通讯作者:
张锦芳
Yage Zhang1, Zining Peng2, Yuwan Zhou1, Jinfang Zhang1,*()
Received:
2025-03-20
Revised:
2025-04-17
Accepted:
2025-05-11
Online:
2025-10-02
Published:
2025-10-02
Contact:
Jinfang Zhang
Supported by:
摘要:
本研究旨在探讨自噬相关基因在骨关节炎(OA)中的作用, 并评估杜仲关键木脂素成分——Eucommin A的治疗潜力。从基因表达综合(GEO)数据库获取OA患者与健康对照的基因表达数据。筛选差异表达基因(DEGs), 并与自噬基因数据库(Human Autophagy Database)交集以确定OA相关自噬基因。通过GO/KEGG富集分析其生物学功能及信号通路。结合机器学习算法及蛋白质-蛋白质相互作用网络筛选核心基因, 并利用独立验证集评估诊断效能。采用分子对接与100 ns分子动力学模拟验证OA自噬核心靶点与Eucommin A的结合稳定性, 结合均方根偏差(RMSD) 、均方根波动(RMSF) 、回转半径(Rg)及MM/GBSA结合自由能计算评估互作机制。结果发现, 在2436个DEGs中, 56个为自噬相关基因, 主要富集于营养响应、细胞凋亡及PI3K-Akt/FoxO通路。机器学习鉴定出EGFR、MAPK3和MAPK8为核心基因, 其中EGFR与MAPK8的诊断效能显著(AUC > 0.5) 。Eucommin A可以通过氢键与疏水作用与EGFR 及MAPK8 表现出强结合亲和力。分子动力学模拟证实其结合稳定, 且自由能分布良好。EGFR与MAPK8可作为OA自噬的诊断标志物。Eucommin A通过稳定自噬相关蛋白发挥多靶点治疗作用, 为基于自噬调控的OA治疗提供新策略。
Supporting:
张雅歌, 彭紫凝, 周榆皖, 张锦芳. 基于生物信息学的骨关节炎自噬关键基因鉴定及Eucommin A治疗潜力分析[J]. 中国药学(英文版), 2025, 34(9): 831-849.
Yage Zhang, Zining Peng, Yuwan Zhou, Jinfang Zhang. Bioinformatics-based identification of autophagy-related key genes in osteoarthritis and therapeutic potential analysis of Eucommin A[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 831-849.
Figure 2. Expression of the training set after batch correction. (A) Pre-batch correction gene expression Principal Component Analysis (PCA). (B) After-batch correction gene expression PCA plot. (C) Heatmap of DEGs. (D) Top 20 up-regulated and down-regulated DEGs. Blue represents down-regulation, while yellow represents up-regulation. (E) Venn diagram illustrating the overlap between DEGs and autophagy genes. (F) Expression levels of autophagy genes in OA, with blue indicating low expression and red indicating high expression.
Figure 3. GO enrichment analyses and KEGG pathway enrichment. (A–C) GO enrichment analysis. (D) KEGG pathway enrichment bubble plot. (E) Secondary pathway diagram for KEGG pathway enrichment analysis. (F) Disease distribution map for enrichment.
Figure 5. Screening of autophagy characteristic genes in OA. (A) LASSO regression analysis. (B) SVM-RFE analyses. (C) PPI network diagram. (D) Venn diagram of feature genes selected by the three methods.
Figure 6. (A–B) Expressions of EGFR, MAPK3, and MAPK8 in the training set. (C–D) Receiver operating characteristic curves of EGFR, MAPK3, and MAPK8 in the GSE82107 validation set.
Figure 7. Visualization diagram of molecular docking. (A) Visualization diagram of Eucommin A binding to EGFR protein; (B) Visualization diagram of Eucommin A binding to MAPK8 protein.
Figure 8. Results of MD simulation. (A) RMSD curve: The lower the RMSD value, the smaller the structural change of the complex and the higher the stability; (B) RMSF curve: The lower the RMSF value, the smaller the fluctuation of amino acid residues during the binding process; (C) Rg curve: The smaller the Rg value, the more it indicates that the system maintained a compact conformation during the simulation process and no significant expansion occurred; (D) Hydrogen bond fluctuation curve: The greater the number of hydrogen bonds, the stronger the interaction and structural stability; (E) SASA curve: A low and stable SASA value indicates that the conformation is tightly folded and stable during the binding process. Structural comparison diagrams of the complex of (F–G) EGFR protein, MAPK8 protein and Eucommin A at five moments of 0, 25, 50, 75 and 100 ns in MD simulation. The red, green, blue, yellow, and orange small molecules in the figure correspond to the Eucommin A molecular structure at the five moments of 0, 25, 50, 75, and 100 ns, respectively.
Figure 9. (A–B) Free energy distribution map of the complex; (C–D) Average binding free energy. VDWAALS, EEL, EGB, ESURF, GGAS, GSOLV, and TOTAL respectively represent van der Waals force, electrostatic energy, polar solvation energy, non-polar solvation energy, molecular mechanical term, solvation energy term, and average binding free energy; (E–F) Energy contribution of combined amino acid residues.
[1] |
Roelofs, A.J.; De Bari, C. Osteoarthritis year in review 2023: biology. Osteoarthr. Cartil. 2024, 32, 148–158.
|
[2] |
Derwich, M.; Mitus–Kenig, M.; Pawlowska, E. Interdisciplinary approach to the temporomandibular joint osteoarthritis–review of the literature. Med. Kaunas. 2020, 56, E225.
|
[3] |
Macri, E.M.; Selles, R.W.; Stefanik, J.J.; Reijman, M. OARSI year in review 2023: rehabilitation and outcomes. Osteoarthr. Cartil. 2023, 31, 1534–1547.
|
[4] |
Foster, N.E.; Eriksson, L.; Deveza, L.; Hall, M. Osteoarthritis year in review 2022: epidemiology & therapy. Osteoarthr. Cartil. 2023, 31, 876–883.
|
[5] |
Roos, E.M.; Arden, N.K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 2015, 12, 92–101.
|
[6] |
Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma–Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; Blanco, F.J.; Espinosa, R.; Haugen, I.K.; Lin, J.; Mandl, L.A.; Moilanen, E.; Nakamura, N.; Snyder–Mackler, L.; Trojian, T.; Underwood, M.; McAlindon, T.E. OARSI guidelines for the non–surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589.
|
[7] |
Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.
|
[8] |
Steinert, A.F.; Ghivizzani, S.C.; Rethwilm, A.; Tuan, R.S.; Evans, C.H.; Nöth, U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 2007, 9, 213.
|
[9] |
Wang, J.; Zhang, Y.; Cao, J.; Wang, Y.; Anwar, N.; Zhang, Z.H.; Zhang, D.M.; Ma, Y.P.; Xiao, Y.; Xiao, L.; Wang, X. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023, 19, 2409–2427.
|
[10] |
Lotz, M.K.; Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 2011, 7, 579–587.
|
[11] |
Wang, J.Y.; Chen, X.J.; Zhang, L.; Pan, Y.Y.; Gu, Z.X.; Yuan, Y. Anti–inflammatory effects of Eucommia ulmoides Oliv. male flower extract on lipopolysaccharide-induced inflammation. Chin. Med. J. 2019, 132, 319–328.
|
[12] |
Hussain, T.; Yuan, D.; Tan, B.; Murtaza, G.; Rahu, N.; Kalhoro, M.S.; Kalhoro, D.H.; Yin, Y.L. Eucommia ulmoides flavones (EUF) abrogated enterocyte damage induced by LPS involved in NF-κB signaling pathway. Toxicol. Vitro. 2020, 62, 104674.
|
[13] |
Murakami, S.; Tasaka, Y.; Takatori, S.; Tanaka, A.; Kawasaki, H.; Araki, H. Effect of eucommia ulmoides leaf extract on chronic dextran sodium sulfate–induced colitis in mice. Biol. Pharm. Bull. 2018, 41, 864–868.
|
[14] |
Xiao, J.C.; Zhang, G.Y.; Chen, B.H.; He, Q.; Mai, J.L.; Chen, W.J.; Pan, Z.F.; Yang, J.Z.; Li, J.L.; Ma, Y.H.; Wang, T.; Wang, H.B. Quercetin protects against iron overload–induced osteoporosis through activating the Nrf2/HO–1 pathway. Life Sci. 2023, 322, 121326.
|
[15] |
Liu, T.; Cao, X.; Cao, D. Combination of UHPLC-Q Exactive-Orbitrap MS and network pharmacology to reveal the mechanism of Eucommia ulmoides leaves in the treatment of osteoarthritis. J. Food Biochem. 2022, 46, e14204.
|
[16] |
Wang, C.Y.; Tang, L.; He, J.W.; Li, J.; Wang, Y.Z. Ethnobotany, phytochemistry and pharmacological properties of eucommia ulmoides: a review. Am. J. Chin. Med. 2019, 47, 259–300.
|
[17] |
He, X.R.; Wang, J.H.; Li, M.X.; Hao, D.J.; Yang, Y.; Zhang, C.L.; He, R.; Tao, R. Eucommia ulmoides Oliv. Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 151, 78–92.
|
[18] |
Zhang, R.; Pan, Y.L.; Hu, S.J.; Kong, X.H.; Juan, W.; Mei, Q.B. Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J. Ethnopharmacol. 2014, 155, 104–112.
|
[19] |
Tang, L.; Ding, J.; Yang, K.; Zong, Z.; Wu, R.; Li, H. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J. Mol. Med. Berl. 2024, 102, 1229–1244.
|
[20] |
Wang, X.Z.; Liu, Z.L.; Deng, S.; Zhou, J.L.; Li, X.Y.; Huang, J.; Chen, J.W.; Ji, C.; Deng, Y.; Hu, Y. SIRT3 alleviates high glucose–induced chondrocyte injury through the promotion of autophagy and suppression of apoptosis in osteoarthritis progression. Int. Immunopharmacol. 2024, 130, 111755.
|
[21] |
Galluzzi, L.; Green, D.R. Autophagy-independent functions of the autophagy machinery. Cell. 2019, 177, 1682–1699.
|
[22] |
Wu, Y.G.; Li, J.; Zeng, Y.; Pu, W.C.; Mu, X.Y.; Sun, K.B.; Peng, Y.; Shen, B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int. J. Oral Sci. 2022, 14, 40.
|
[23] |
Akasaki, Y.; Hasegawa, A.; Saito, M.; Asahara, H.; Iwamoto, Y.; Lotz, M.K. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthr. Cartil. 2014, 22, 162–170.
|
[24] |
Fisch, K.M.; Gamini, R.; Alvarez–Garcia, O.; Akagi, R.; Saito, M.; Muramatsu, Y.; Sasho, T.; Koziol, J.A.; Su, A.I.; Lotz, M.K. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthr. Cartil. 2018, 26, 1531–1538.
|
[25] |
Chen, X.Q.; Peng, B.; Jiang, H.M.; Zhang C.X.; Li, H.Y.; Li Z.Y. Salvianolic acid B alleviates oxidative stress in non-alcoholic fatty liver disease by mediating the SIRT3/FOXO1 signaling pathway. J. Chin. Pharma. Sci. 2022, 31, 698–710.
|
[26] |
Ohzono, H.; Hu, Y.; Nagira, K.; Kanaya, H.; Okubo, N.; Olmer, M.; Gotoh, M.; Kurakazu, I.; Akasaki, Y.; Kawata, M.; Chen, E.; Chu, A.C.; Johnson, K.A.; Lotz, M.K. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Ann. Rheum Dis. 2023, 82, 262–271.
|
[27] |
Xu, G.; Wang, J.; Ma, L.; Zhao, X.; Luo, W.; Jin, Q. Local intra-articular injection of rapamycin inhibits NLRP3 activity and prevents osteoarthritis in mouse DMM models. Autoimmunity. 2019, 52, 168–175.
|
[28] |
Zhou, X.Y.; Fu, D.; Sun, S.G.; Liu, Q.Y.; Liu, L.X.; Shi, J.; Ge, Z.J.; Ma, Y.; He, Y.L.; Xu, L.; Qian K. Magnesium isoglycyrrhizinate ameliorates isoproterenol-induced myocardial remodeling in mice by regulating oxidative stress and apoptosis via the PI3K/AKT1 signaling pathway. J. Chin. Pharma. Sci. 2025, 34, 321–333.
|
[29] |
Lu, R.; He, Z.; Zhang, W.; Wang, Y.; Cheng, P.; Lv, Z.; Yuan, X.; Guo, F.; You, H.; Chen, A.M.; Hu, W. Oroxin B alleviates osteoarthritis through anti–inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy. Endocrinol. Lausanne. 2022, 13, 1060721.
|
[30] |
Li, J.; Jiang, M.; Yu, Z.; Xiong, C.; Pan, J.; Cai, Z.; Xu, N.; Zhou, X.; Huang, Y.; Yang, Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol. Biol. Lett. 2022, 27, 62.
|
[31] |
Constantino de Campos, G.; Mundi, R.; Whittington, C.; Toutounji, M.J.; Ngai, W.; Sheehan, B. Osteoarthritis, mobility–related comorbidities and mortality: an overview of meta-analyses. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20981219.
|
[32] |
Peng, X.Y.; Lu, Y.; Chen, P.Y.; Wong, C.H. The mediating effect of depression on the relationship between osteoarthritis and cardiovascular disease mortality: a cohort study. J. Affect. Disord. 2023, 341, 329–334.
|
[33] |
Dickson, B.M.; Roelofs, A.J.; Rochford, J.J.; Wilson, H.M.; De Bari, C. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res. Ther. 2019, 21, 289.
|
[34] |
Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.
|
[35] |
Holowka, D.; Baird, B. Mechanisms of epidermal growth factor receptor signaling as characterized by patterned ligand activation and mutational analysis. Biochim. Biophys. Acta BBA Biomembr. 2017, 1859, 1430–1435.
|
[36] |
Ciardiello, F.; Hirsch, F.R.; Pirker, R.; Felip, E.; Valencia, C.; Smit, E.F. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non–small cell lung cancer. Cancer Treat. Rev. 2024, 122, 102664.
|
[37] |
Jia, H.; Ma, X.; Tong, W.; Doyran, B.; Sun, Z.; Wang, L.; Zhang, X.; Zhou, Y.; Badar, F.; Chandra, A.; Lu, X.; Xia, Y.; Han, L.; Enomoto-Iwamoto, M.; Qin, L. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Osteoarthr. Cartil. 2017, 25, S61–S62.
|
[38] |
Wei, Y.L.; Ma, X.Y.; Sun, H.; Gui, T.; Li, J.; Yao, L.T.; Zhong, L.L.; Yu, W.; Han, B.; Nelson, C.L.; Han, L.; Beier, F.; Enomoto-Iwamoto, M.; Ahn, J.; Qin, L. EGFR signaling is required for maintaining adult cartilage homeostasis and attenuating osteoarthritis progression. J. Bone Miner. Res. 2022, 37, 1012–1023.
|
[39] |
Bellini, M.; Pest, M.A.; Miranda–Rodrigues, M.; Qin, L.; Jeong, J.W.; Beier, F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis–like phenotype in mice. Arthritis Res. Ther. 2020, 22, 119.
|
[40] |
Gui, T.; Wei, Y.L.; Luo, L.J.; Li, J.; Zhong, L.L.; Yao, L.T.; Beier, F.; Nelson, C.L.; Tsourkas, A.; Liu, X.S.; Enomoto–Iwamoto, M.; Yu, F.F.; Cheng, Z.L.; Qin, L. Activating EGFR signaling attenuates osteoarthritis development following loading injury in mice. J. Bone Miner. Res. 2020, 37, 2498–2511.
|
[41] |
Wei, Y.L.; Luo, L.J.; Gui, T.; Yu, F.F.; Yan, L.S.; Yao, L.T.; Zhong, L.L.; Yu, W.; Han, B.; Patel, J.M.; Liu, J.F.; Beier, F.; Levin, L.S.; Nelson, C.; Shao, Z.W.; Han, L.; Mauck, R.L.; Tsourkas, A.; Ahn, J.; Cheng, Z.L.; Qin, L. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci. Transl. Med. 2021, 13, eabb3946.
|
[42] |
Li, N.N.; Xia, N.; He, J.Y.; Liu, M.L.; Gu, M.Y.; Lu, Y.Z.; Yang, H.Y.; Hao, Z.H.; Zha, L.F.; Wang, X.H.; Wang, W.M.; Hu, D.S.; Hu, J.; Cheng, X. Amphiregulin improves ventricular remodeling after myocardial infarction by modulating autophagy and apoptosis. FASEB J. 2024, 38, e23488.
|
[43] |
Lee, K.; Seo, I.; Choi, M.H.; Jeong, D. Roles of mitogen–activated protein kinases in osteoclast biology. Int. J. Mol. Sci. 2018, 19, 3004.
|
[44] |
Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006, 12, 17–25.
|
[45] |
Ross, F.P. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. NY Acad. Sci. 2006, 1068, 110–116.
|
[46] |
Gómez–Puerto, M.C.; Verhagen, L.P.; Braat, A.K.; Lam, E.W.; Coffer, P.J.; Lorenowicz, M.J. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016, 12, 1804–1816.
|
[47] |
Wei, M.; Duan, D.; Liu, Y.; Wang, Z.; Li, Z. Autophagy may protect MC3T3–E1 cells from fluoride-induced apoptosis. Mol. Med. Rep. 2014, 9, 2309–2315.
|
[48] |
Wang, Z.; Liu, N.; Liu, K.; Zhou, G.; Gan, J.; Wang, Z.; Shi, T.; He, W.; Wang, L.; Guo, T.; Bao, N.; Wang, R.; Huang, Z.; Chen, J.; Dong, L.; Zhao, J.; Zhang, J. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015, 11, 2358–2369.
|
[49] |
Chai, F.; Peng, H.X.; Qin, L.X.; Liu, C.H.; Zeng, Y.L.; Wang, R.; Xu, G.D.; Wang, R.Q.; Wei, G.J.; Huang, H.Y.; Lan, Y.; Chen, W.C.; Wang, C.F. MicroRNA miR–181d–5p regulates the MAPK signaling pathway by targeting mitogen–activated protein kinase 8 (MAPK8) to improve lupus nephritis. Gene. 2024, 893, 147961.
|
[50] |
He, Q.S.; Ding, H.M. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci. Rep. 2023, 13, 4508.
|
[51] |
Aslam, B.; Hussain, A.; Faisal, M.N.; Kousar, S.; Roobi, A.; Sajid, M.R.; Gul, A. Polyherbal extract improves glycometabolic control in alloxan–induced diabetic rats via down-regulating the MAPK/JNK pathway, modulating Nrf-2/Keap-1 expression, and stimulating insulin signaling. Iran J. Basic Med. Sci. 2024, 27, 170–179.
|
[52] |
Itah, Z.; Chaudhry, S.; Raju Ponny, S.; Aydemir, O.; Lee, A.; Cavanagh-Kyros, J.; Tournier, C.; Muller, W.J.; Davis, R.J. HER2–driven breast cancer suppression by the JNK signaling pathway. Proc. Natl. Acad. Sci. USA. 2023, 120, e2218373120.
|
[1] | 邓茜, 彭紫凝, 毛丹宁, 黄元波, 刘念, 晏蔚田, 彭江云. 基于生物信息与网络药理学探究飞龙掌血治疗骨关节炎的作用机制[J]. 中国药学(英文版), 2025, 34(9): 860-872. |
[2] | 李永梅, 王源, 张晓明, 高艺文, 辛春红, 张楠. 黄连解毒汤对自发性高血压大鼠心肌线粒体自噬作用的研究[J]. 中国药学(英文版), 2025, 34(9): 850-859. |
[3] | 聂敏, 刘八一, 林冰, 王华敏, 陈华琼, 黄莹. 慢性阻塞性肺疾病相关铁死亡的关键基因筛选及免疫浸润分析[J]. 中国药学(英文版), 2025, 34(7): 622-632. |
[4] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[5] | 苏靖靖, 苏康康, 宋艳平, 郝丽慧, 王杏, 杨林泉, 王超, 陈淑霞, 谷剑. 基于生物信息学的通心络胶囊治疗急性心肌梗死的研究[J]. 中国药学(英文版), 2024, 33(11): 1040-1057. |
[6] | 李钦青, 辛彦利, 刘朴霖, 李凯文, 景彩芳, 张学兰, 贺文彬. 通过生物信息学分析女贞子治疗糖尿病肾病的作用机制[J]. 中国药学(英文版), 2024, 33(11): 1025-1039. |
[7] | 黄荣, 胡小娇, 张润芳, 李晓晖, 岑娟. 反应氧族促进神经保护的量效关系及其机制研究[J]. 中国药学(英文版), 2024, 33(1): 46-56. |
[8] | 郑吴殷晓, 李海平, 罗来春, 胡春玲, 尤朋涛. TOPC通过抑制PI3K/AKT/mTOR通路, 抑制miR-210, Atg7诱导H1975细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 881-892. |
[9] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[10] | 赵雅慧, 赵莉, 赵娟, 卢继业, 田薇, 胡金朋, 苏彬, 付立华, 郭然. 基于生物信息学分析探讨地塞米松通过上调TNFAIP3减轻烟雾吸入性急性肺损伤炎症反应的机制[J]. 中国药学(英文版), 2022, 31(9): 689-697. |
[11] | 姚昆鹏, 张道平, 刘起立, 蔡虎志, 陈青扬, 陈新宇. 整合生物信息学鉴定与分析急性心肌梗死的特征基因及潜在中药预测[J]. 中国药学(英文版), 2022, 31(12): 912-927. |
[12] | 蒋维维, 全海燕, 何璐, 江兴. 基于生物信息学的CCTs对人肝细胞癌的诊断和预后价值[J]. 中国药学(英文版), 2022, 31(10): 782-797. |
[13] | 张精亮, 胡涛, 刘晓岩, 朱元军, 陈晓玲, 刘晔, 王银叶. 002C-3通过抑制MMPs和细胞自噬并激活细胞存活相关的钙信号通路保护小鼠脑缺血再灌注损伤[J]. 中国药学(英文版), 2016, 25(8): 598-604. |
[14] | 赵曜, 张婧莹, 胡英杰, 吴佳栓, 卜英子, 吕万良. 柔红霉素与罗非昔布联合应用增强三阴性乳腺癌的治疗效应与作用机制[J]. 中国药学(英文版), 2016, 25(6): 438-447. |
[15] | 陈亚, 金宏威, 张亮仁, 刘振明. 人多药耐药相关蛋白MRP4不同状态的分子模型[J]. 中国药学(英文版), 2016, 25(6): 428-437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||