中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (9): 795-804.DOI: 10.5246/jcps.2024.09.059
王浩1, 陈康雪2, 张雨焱2, 蒋奎军2, 孙中磊2,*()
收稿日期:
2023-12-27
修回日期:
2024-01-28
接受日期:
2024-04-16
出版日期:
2024-10-03
发布日期:
2024-10-03
通讯作者:
孙中磊
Hao Wang1, Kangxue Chen2, Yuyan Zhang2, Kuijun Jiang2, Zhonglei Sun2,*()
Received:
2023-12-27
Revised:
2024-01-28
Accepted:
2024-04-16
Online:
2024-10-03
Published:
2024-10-03
Contact:
Zhonglei Sun
Supported by:
摘要:
本文探索发育内皮细胞因子-1(Developmental endothelial locus-1, Del-1)对脊髓肌浆网内质网钙调蛋白2 (sarcoplasmic reticulum Ca2+ ATPase 2, SERCA2)的影响, 及其对脊髓损伤(spinal cord injury, SCI)的可能作用。48只小鼠随机均分为sham组、SCI组和SCI+CE组, 每组随机均分为两个亚组, Del处理亚组给予尾静脉注射Del-1 (1 μg/d)连续1周, 另一组注射等量生理盐水; 实验1周后处死小鼠, 取脊髓进行下一步处理。首先通过免疫印迹分析Del-1在脊髓中对SERCA2的作用; 然后通过免疫印迹和荧光TUNEL分析Del-1对小鼠SCI内质网应激、炎症和凋亡的作用; 最后通过免疫印迹和荧光TUNEL分析分析阻断SERCA2后Del-1对小鼠SCI内质网应激、炎症和凋亡的作用。结果表明Del-1处理增加了脊髓中SERCA2的表达(P < 0.01), 并且减弱了SCI诱导的ER应激、炎症和神经细胞凋亡(P < 0.01); 阻断SCI小鼠脊髓中SERCA2表达, 促进ER应激、炎症反应和神经细胞凋亡(P < 0.01), 但Del-1处理并不能减少阻断SERCA2对ER应激、炎症反应和神经细胞凋亡的影响(P > 0.05)。最终得出Del-1可以通过促进SERCA2表达降低脊髓损伤的ER应激、炎症反应和神经细胞凋亡。
Supporting:
王浩, 陈康雪, 张雨焱, 蒋奎军, 孙中磊. Del-1促进SERCA2表达抑制ER应激、炎症和神经细胞凋亡保护小鼠SCI[J]. 中国药学(英文版), 2024, 33(9): 795-804.
Hao Wang, Kangxue Chen, Yuyan Zhang, Kuijun Jiang, Zhonglei Sun. Developmental endothelial locus-1 enhances ER calmodulin expression, mitigates ER stress, suppresses inflammation, and attenuates neuronal apoptosis[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(9): 795-804.
Figure 1. Del-1 treatment increases SERCA2 expression levels in both normal and injured spinal cords. Sham group (normal control group without Del-1 treatment subgroup), sham + Del group (normal control Del-1 treatment subgroup), SCI group (SCI group without Del-1 treatment subgroup), SCI + Del group (SCI + Del-1 treatment subgroup), and the No. 1 mouse image of each group was taken as representative. Compared with the sham group normal saline subgroup **P < 0.01, compared with the SCI group normal saline subgroup #P < 0.05.
Figure 2. (A) Immunoblotting analysis of CHOP, ELF2α, TNF-α, IL-6, Caspase-3, Bcl-2, and β-actin; (B) The relative content of CHOP protein with β-actin as the contrast band; (C) The relative ELF2α protein content with β-actin as the contrast band; (D) The relative content of TNF-α protein with β-actin as the contrast band; (E) The relative content of IL-6 protein with β-actin as the contrast band; (F) The relative content of Caspase-3 protein with β-actin as the contrast band; (G) The relative content of Bcl-2 protein with β-actin as the contrast band; (H) TUNEL immunofluorescence assessment, scale bar = 100 μm; (I) The percentage of TUNEL-positive cells; Values are expressed as mean ± SD. sham group (subgroup without Del-1 treatment), SCI group (subgroup without Del-1 treatment after SCI), SCI + Del (subgroup with Del-1 treatment after SCI), and the No. 1 mouse image of each group was taken as representative. Compared with the sham group, **P < 0.01, compared with the SCI group, ##P < 0.01.
Figure 3. (A) Immunoblotting analysis of SERCA2, CHOP, ELF2α, TNF-α, IL-6, Caspase-3, Bcl-2 and β-actin; (B) The relative content of SERCA2 protein with β-actin as the contrast band; (C) The relative content of CHOP protein with β-actin as the contrast band; (D) Relative content of ELF2α protein with β-actin as the contrast band; (E) The relative content of TNF-α protein with β-actin as the contrast band; (F) The relative content of IL-6 protein with β-actin as the contrast band; (G) The relative content of Caspase-3 protein with β-actin as the contrast band; (H) The relative content of Bcl-2 protein with β-actin as the contrast band; (I) Immunofluorescence assessment of TUNEL, scale bar = 100 μm; (J) The percentage of TUNEL-positive cells; Values are expressed as mean ± SD. SCI group (without Del-1 treatment after SCI), SCI + CE group (SERCA2 blockade after SCI, without Del-1 treatment), SCI + Del group (SERCA2 blockade after SCI, Del-1 treatment), and the images of No. 1 mice in each group were taken as representative. Compared with the SCI group, **P < 0.01, compared with the SCI + CE group, NSP > 0.05.
[1] |
Hurlbert, R.J.; Hadley, M.N.; Walters, B.C.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Rozzelle, C.J.; Ryken, T.C.; Theodore, N. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2015, 76, S71–S83.
|
[2] |
Khazaeipour, Z.; Taheri-Otaghsara, S.M.; Naghdi, M. Depression following spinal cord injury: its relationship to demographic and socioeconomic indicators. Top. Spinal Cord Inj. Rehabil. 2015, 21, 149–155.
|
[3] |
Varma, A.K.; Das, A.; Wallace, G. 4th, Barry, J.; Vertegel, A.A.; Ray, S.K.; Banik, N.L. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem. Res. 2013, 38, 895–905.
|
[4] |
Wolf, J.A.; Stys, P.K.; Lusardi, T.; Meaney, D.; Smith, D.H. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 2001, 21, 1923–1930.
|
[5] |
Kapoor, R.; Davies, M.; Blaker, P.A.; Hall, S.M.; Smith, K.J. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann. Neurol. 2003, 53, 174–180.
|
[6] |
Kapoor, R.; Davies, M.; Blaker, P.A.; Hall, S.M.; Smith, K.J. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann. Neurol. 2003, 53, 174–180.
|
[7] |
Sun, Z.L.; Liu, Y.F.; Kong, X.B.; Wang, R.J.; Xu, Y.Q.; Shang, C.Z.; Huo, J.R.; Huang, M.Q.; Zhao, F.; Bian, K.F.; Zhang, S.; Tu, Y.; Chen, X.Y. Exendin-4 plays a protective role in a rat model of spinal cord injury through SERCA2. Cell Physiol. Biochem. 2018, 47, 617–629.
|
[8] |
Hajishengallis, G.; Chavakis, T. Endogenous modulators of inflammatory cell recruitment. Trends Immunol. 2013, 34, 1–6.
|
[9] |
Choi, E.Y.; Chavakis, E.; Czabanka, M.A.; Langer, H.F.; Fraemohs, L.; Economopoulou, M.; Kundu, R.K.; Orlandi, A.; Zheng, Y.Y.; Prieto, D.A.; Ballantyne, C.M.; Constant, S.L.; Aird, W.C.; Papayannopoulou, T.; Gahmberg, C.G.; Udey, M.C.; Vajkoczy, P.; Quertermous, T.; Dimmeler, S.; Weber, C.; Chavakis, T. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science. 2008, 322, 1101–1104.
|
[10] |
Eskan, M.A.; Jotwani, R.; Abe, T.; Chmelar, J.; Lim, J.H.; Liang, S.; Ciero, P.A.; Krauss, J.L.; Li, F.G.; Rauner, M.; Hofbauer, L.C.; Choi, E.Y.; Chung, K.J.; Hashim, A.; Curtis, M.A.; Chavakis, T.; Hajishengallis, G. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 2012, 13, 465–473.
|
[11] |
Choi, E.Y.; Lim, J.H.; Neuwirth, A.; Economopoulou, M.; Chatzigeorgiou, A.; Chung, K.J.; Bittner, S.; Lee, S.H.; Langer, H.; Samus, M.; Kim, H.; Cho, G.S.; Ziemssen, T.; Bdeir, K.; Chavakis, E.; Koh, J.Y.; Boon, L.; Hosur, K.; Bornstein, S.R.; Meuth, S.G.; Hajishengallis, G.; Chavakis, T. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol. Psychiatry. 2015, 20, 880–888.
|
[12] |
Kang, Y.Y.; Kim, D.Y.; Lee, S.H.; Choi, E.Y. Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice. Biochem. Biophys. Res. Commun. 2014, 445, 369–374.
|
[13] |
Sun, J.L.; Park, J.; Lee, T.; Jeong, J.H.; Jung, T.W. DEL-1 ameliorates high-fat diet-induced insulin resistance in mouse skeletal muscle through SIRT1/SERCA2-mediated ER stress suppression. Biochem. Pharmacol. 2020, 171, 113730.
|
[14] |
Hu, J.Z.; Long, H.; Wu, T.D.; Zhou, Y.; Lu, H.B. The effect of estrogen-related receptor α on the regulation of angiogenesis after spinal cord injury. Neuroscience. 2015, 290, 570–580.
|
[15] |
do Couto Nicola, F.; Marques, M.R.; Odorcyk, F.; Arcego, D.M.; Petenuzzo, L.; Aristimunha, D.; Vizuete, A.; Sanches, E.F.; Pereira, D.P.; Maurmann, N.; Dalmaz, C.; Pranke, P.; Netto, C.A. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res. 2017, 1663, 95–105.
|
[16] |
Mekahli, D.; Bultynck, G.; Parys, J.B.; De Smedt, H.; Missiaen, L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a004317.
|
[17] |
Kourtzelis, I.; Li, X.F.; Mitroulis, I.; Grosser, D.; Kajikawa, T.; Wang, B.M.; Grzybek, M.; von Renesse, J.; Czogalla, A.; Troullinaki, M.; Ferreira, A.; Doreth, C.; Ruppova, K.; Chen, L.S.; Hosur, K.; Lim, J.H.; Chung, K.J.; Grossklaus, S.; Tausche, A.K.; Joosten, L.A.B.; Moutsopoulos, N.M.; Wielockx, B.; Castrillo, A.; Korostoff, J.M.; Coskun, Ü.; Hajishengallis, G.; Chavakis, T. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 2019, 20, 40–49.
|
[18] |
Yan, S.; Chen, L.; Zhao, Q.; Liu, Y.N.; Hou, R.; Yu, J.; Zhang, H. Developmental endothelial locus-1 (Del-1) antagonizes Interleukin-17-mediated allergic asthma. Immunol. Cell Biol. 2018, 96, 526–535.
|
[19] |
West, X.Z.; Malinin, N.L.; Merkulova, A.A.; Tischenko, M.; Kerr, B.A.; Borden, E.C.; Podrez, E.A.; Salomon, R.G.; Byzova, T.V. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010, 467, 972–976.
|
[20] |
Zhao, H.S.; Chen, S.R.; Gao, K.; Zhou, Z.P.; Wang, C.; Shen, Z.L.; Guo, Y.; Li, Z.; Wan, Z.H.; Liu, C.; Mei, X.F. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience. 2017, 348, 241–251.
|
[21] |
Huang, J.H.; Yin, X.M.; Xu, Y.; Xu, C.C.; Lin, X.; Ye, F.B.; Cao, Y.; Lin, F.Y. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J. Neurotrauma. 2017, 34, 3388–3396.
|
[22] |
Gu, S.X.; Xie, R.; Liu, X.D.; Shou, J.J.; Gu, W.T.; Che, X.M. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury. Int. J. Mol. Sci. 2017, 18, 732.
|
[23] |
Gao, K.; Shen, Z.L.; Yuan, Y.J.; Han, D.H.; Song, C.W.; Guo, Y.; Mei, X.F. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury. J. Neurochem. 2016, 138, 139–149.
|
[24] |
Zhu, H.G.; Xie, R.; Liu, X.D.; Shou, J.J.; Gu, W.T.; Gu, S.X.; Che, X.M. MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury. Biomed. Pharmacother. 2017, 92, 879–887.
|
[25] |
Kurnellas, M.P.; Nicot, A.; Shull, G.E.; Elkabes, S. Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury. FASEB J. 2005, 19, 298–300.
|
[26] |
Dremina, E.S.; Sharov, V.S.; Kumar, K.; Zaidi, A.; Michaelis, E.K.; Schöneich, C. Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem. J. 2004, 383, 361–370.
|
[27] |
Kwon, C.H.; Sun, J.L.; Kim, M.J.; Abd El-Aty, A.M.; Jeong, J.H.; Jung, T.W. Clinically confirmed DEL-1 as a myokine attenuates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes via AMPK/HO-1- pathway. Adipocyte. 2020, 9, 576–586.
|
[28] |
Kumar, S.; Behera, S.; Basu, A.; Dey, S.; Ghosh-Roy, A. Swimming exercise promotes post-injury axon regeneration and functional restoration through AMPK. eNeuro. 2021, 8, ENEURO.0414–20.2021.
|
[1] | 张楠, 刘志敏, 杨宣梅, 李爽, 高艺文, 秦海洸. 千斤拔多糖对类风湿关节炎模型小鼠干预效果研究[J]. 中国药学(英文版), 2024, 33(8): 705-713. |
[2] | 陈都, 鱼毛毛, 张庆义, 胡睿, 周析巧, 邰北, 陆有群, 祁荣. 纳米脂质体促进柚皮素对弹性蛋白酶诱导的小鼠腹主动脉瘤的抑制作用[J]. 中国药学(英文版), 2024, 33(3): 201-215. |
[3] | 楼昆昂, 卢栋升, 潘奕杨, 乐言, 闫焕, 付浩, 李银丹, 杨金姬, 曲苗. 疏血通联合丁苯酞对急性缺血性脑卒中患者神经功能及炎症反应的影响[J]. 中国药学(英文版), 2024, 33(3): 241-247. |
[4] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[5] | 王番, 李锐莉, 王文军, 周晓燕, 刘美佑, 赵瑾怡, 文爱东, 王婧雯, 贾艳艳. α-乳香酸通过抑制TLR4介导的炎症通路改善急性肾损伤[J]. 中国药学(英文版), 2023, 32(7): 539-550. |
[6] | 阳丽梅, 王丽满, 黄旭慧, 庄捷. 华法林通过调控Gas6/Axl/PI3K/Akt/NF-κB通路影响肺癌细胞株的增殖和凋亡[J]. 中国药学(英文版), 2023, 32(3): 190-199. |
[7] | 王昭景, 许青霞, 许京, 徐嵬, 杨秀伟. 补骨脂宁通过激活Nrf2/HO-1并抑制NF-κB信号通路在过氧化氢诱导的HT22细胞和脂多糖诱导的BV2细胞上发挥抗氧化和抗神经炎症作用[J]. 中国药学(英文版), 2023, 32(2): 85-100. |
[8] | 陈培杰, 张云天. PTP1B抑制肝纤维化逆转期TRAIL诱导的肝星状细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 867-880. |
[9] | 郑吴殷晓, 李海平, 罗来春, 胡春玲, 尤朋涛. TOPC通过抑制PI3K/AKT/mTOR通路, 抑制miR-210, Atg7诱导H1975细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 881-892. |
[10] | 李楷, 唐冰洁, 柴新龙, 平洋, 王丽红, 苏瑾. 唾液酸功能化靶向给药系统: 与唾液酸结合免疫球蛋白样凝集素或选择素受体结合的肿瘤和炎症治疗进展[J]. 中国药学(英文版), 2023, 32(10): 773-795. |
[11] | 黄津, 邓凯翔, 黄美珍, 林高敏, 林媚, 练水梅, 张美泉. NF-κB抑制剂PDTC诱导人肝星状细胞LX-2凋亡的药理机制[J]. 中国药学(英文版), 2022, 31(9): 665-676. |
[12] | 赵雅慧, 赵莉, 赵娟, 卢继业, 田薇, 胡金朋, 苏彬, 付立华, 郭然. 基于生物信息学分析探讨地塞米松通过上调TNFAIP3减轻烟雾吸入性急性肺损伤炎症反应的机制[J]. 中国药学(英文版), 2022, 31(9): 689-697. |
[13] | 黄嘉欢, 岳玲, 张铭儒, 杨全, 程轩轩. 辣蓼对大肠杆菌性腹泻小鼠炎症因子和细胞色素P450酶表达的影响[J]. 中国药学(英文版), 2022, 31(8): 622-633. |
[14] | 张婵娟, 胡立坤, 张贺, 漆心怡, 黄健, 刘东. 2-Hydroxycircumdatin C通过抑制TLR4/NF-κB/MAPK和JAK2/STAT3通路对脂多糖诱导BV2小胶质细胞发挥抗炎作用[J]. 中国药学(英文版), 2022, 31(4): 239-249. |
[15] | 王颖峥, 杨策, 朱翠萍, 赵茜茜, 卢雪花, 苏晓宇, 王英豪. 羌活通过调节P2X3抑制PKC诱导的炎症反应治疗"上肢痹痛"[J]. 中国药学(英文版), 2022, 31(3): 163-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||