中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (9): 805-818.DOI: 10.5246/jcps.2024.09.060
收稿日期:
2023-10-27
修回日期:
2023-12-28
接受日期:
2024-03-14
出版日期:
2024-10-03
发布日期:
2024-10-03
通讯作者:
方毅
Ping Shang, Lin Liu, Yi Fang*()
Received:
2023-10-27
Revised:
2023-12-28
Accepted:
2024-03-14
Online:
2024-10-03
Published:
2024-10-03
Contact:
Yi Fang
Supported by:
摘要:
卵巢早衰是妇科常见疾病, 严重影响患者的心身健康, 六味地黄丸是中药复方, 对卵巢早衰具有积极作用。然而六味地黄丸的作用机制尚不清楚。因此, 本研究旨在通过网络药理学和分子对接技术揭示六味地黄丸治疗卵巢早衰的可能分子机制。首先, 在TCMSP中筛选六味地黄丸的成分和靶点; 并通过Disgenet、TTD、Drugbank、GeneCards、OMIM、PharmGKB数据库检索POF相关靶点; 将两者通过R语言、Cytoscapes和STRING进行汇总分析, 筛选出中药靶基因与疾病相关基因并构建中药调控网络和PPI网络图, 通过Metascape数据库对数据进行GO和KEGG富集分析; 最后, 以核心基因的蛋白受体和对应活性成分配体进行分子对接。共筛选出六味地黄丸49个成分和189个(去重复后)预测靶点, 卵巢早衰靶点4524个(去重复后); 通过比对六味地黄丸和POF共同靶点, 筛选出163个潜在基因; 这些共同靶点涉及对化学物质反应、分子功能调节、信号受体结合等生物学过程; 生物学通路包括MAPK信号通路、IL-17信号通路、HIF-1信号通路等。分子对接结果显示六味地黄丸的核心基因与成分有较好的结合能。
Supporting:
尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨六味地黄丸治疗卵巢早衰的作用机制[J]. 中国药学(英文版), 2024, 33(9): 805-818.
Ping Shang, Lin Liu, Yi Fang. Deciphering the mechanism of Liu Wei Di Huang Wan in treating premature ovarian failure: a comprehensive exploration through network pharmacology and molecular docking analysis[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(9): 805-818.
Figure 3. Drug-molecular-target network diagram. The circle shape indicates the name of the Chinese medicine (SY: Chinese Yam, SZY: cornel, FL: Poria, ZX: Alisma orientale, MDP: Peony bark, SDH: Prepared Radix Rehmanniae), the hexagon of each color indicates the compound molecule, and the diamond indicates the drug target.
Figure 8. The five target protein-active molecule docking patterns with smaller binding energies active. (A) The mode of action of diosgenin with the target ATK1 (PDB ID: 4GV1); (B) The mode of action of quercetin with the target CASP3 (PDB ID: 3DEK); (C) The mode of action of quercetin with the target EGFR (PDB ID: 4RJ3); (D) The mode of action of quercetin with the target JUN (PDB ID: 3OY1); (E) The mode of action of quercetin with the target MYC (PDB ID: 3BBF).
[1] |
Lim, Y.M.; Jeong, K.; Lee, S.R.; Chung, H.W.; Lee, W. Association between premature ovarian insufficiency, early menopause, socioeconomic status in a nationally representative sample from Korea. Maturitas. 2019, 121, 22–27.
|
[2] |
Qin, Y.Y.; Jiao, X.; Simpson, J.L.; Chen, Z.J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum. Reprod. Update. 2015, 21, 787–808.
|
[3] |
Chen, Z.J. Reproductive endocrinology. Beijing: People’s Health Publishing House. 2016.
|
[4] |
Shi, G.L.; Lei, Z.Y. New advances in the etiology and treatment of premature ovarian failure. Med. Inf. 2011, 24, 5597–5598.
|
[5] |
Kalantari, H.; Madani, T.; Zari Moradi, S.; Mansouri, Z.; Almadani, N.; Gourabi, H.; Mohseni Meybodi, A. Cytogenetic analysis of 179 Iranian women with premature ovarian failure. Gynecol. Endocrinol. 2013, 29, 588–591.
|
[6] |
Zhang, H.J.; Fan, C.L.; Wei, S.B. Current status of Chinese and Western medicine treatment for premature ovarian failure due to abnormal immune function. Clin. J. Tradit. Chin. Med. 2018, 30, 1006–1010.
|
[7] |
Zhang, Y.; Liu, Y.; Wang, H. Exploration of Professor Wang Peijuan’s experience in treating early-onset ovarian insufficiency using the method of tonifying the kidney and activating blood. Inn. Mong. Tradit. Chin. Med. 2020, 39, 70–72.
|
[8] |
Zhang, M.M.; Song, K.K.; Liu, J.Y. Exploration of Huang Guangying’s idea of combining Chinese and Western medicine in the treatment of early-onset ovarian insufficiency. Chin. J. Int. Tradit. Chin. West. Med. 2019, 39, 621–623.
|
[9] |
Zhao, J.; Liu, J.J. Professor Liu Jingjun's clinical experience on ovarian insufficiency . World Abstr. Latest Med. Inf. 2018, 18, 214–215.
|
[10] |
Liu, X.L.; Wu, Z.C.; Dai, H. Clinical effect observation of Liu Wei Di Huang Wan in the treatment of premature ovarian failure. J. Pract. Gynecol. Endocrinol. (Electronic version). 2019, 6, 72–73.
|
[11] |
Du, J.M. Clinical observation of hormone combined with Liu Wei Di Huang Wan on replacement therapy for premature ovarian failure. Shenzhen J. Int. Med. 2016, 26, 51–53.
|
[12] |
Huang, C.S.; He, S.D.; Guan, Y.C. Effects of cuscuta flavonoids and quercetin on ovarian function in rats with premature ovarian failure induced by Cuscuta polysaccharide. Chin. J. Clin. Pharm. 2020, 36, 667–670.
|
[13] |
Elkady, M.A.; Shalaby, S.; Fathi, F.; El-Mandouh, S. Effects of quercetin and rosuvastatin each alone or in combination on cyclophosphamide-induced premature ovarian failure in female albino mice. Hum. Exp. Toxicol. 2019, 38, 1283–1295.
|
[14] |
Zhao, Y.M.; Zhang, J.K.; Cai, Z.B. Advances in clinical research of Akt inhibitors. Chin. Mod. Appl. Pharm. 2017, 34, 625–630.
|
[15] |
Wang, Q.; Yu, W.N.; Chen, X.Y.; Peng, X.D.; Jeon, S.M.; Birnbaum, M.J.; Guzman, G.; Hay, N. Spontaneous hepatocellular carcinoma after the combined deletion of Akt isoforms. Cancer Cell. 2016, 29, 523–535.
|
[16] |
Asselin, E.; Wang, Y.; Tsang, B.K. X-linked inhibitor of apoptosis protein activates the phosphatidylinositol 3-kinase/Akt pathway in rat granulosa cells during follicular development. Endocrinology. 2001, 142, 2451–2457.
|
[17] |
Caitlin, B.; Jessica, L.R.; Jodie, P.; Melissa, O.; Linnea, A.; Stuart, D.S.; Paula, T.; Teresa, P.; Mary, L.H. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKB alpha/Akt1. Biol. Reprod. 2010, 82, 246–56.
|
[18] |
Brown, C.; LaRocca, J.; Pietruska, J.; Ota, M.; Anderson, L.; Duncan Smith, S.; Weston, P.; Rasoulpour, T.; Hixon, M.L. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBalpha/Akt11. Biol. Reprod. 2010, 82, 246–256.
|
[19] |
Huang, J.Y.; Xu, M.; Wang, Y.Y.; Wen, D.T.; Lin, X.J. Effects of the kidney-supplementing and essence-filling herbal medicine Xianzi Yizhen capsule on the ovarian PI3K/AKT pathway in mice with premature ovarian failure model. Chin. J. Int. Med. 2018, 38, 1203–1208.
|
[20] |
Sun, S.L.; Chen, H.; Zheng, X.X.; Ma, C.Y.; Yue, R.Q. Analysis on the level of IL-6, IL-21, AMH in patients with auto-immunity premature ovarian failure and study of correlation. Exp. Ther. Med. 2018, 16, 3395–3398.
|
[21] |
Yang, M.; Lin, L.; Sha, C.; Li, T.; Zhao, D.; Wei, H.; Chen, Q.; Liu, Y.; Chen, X.; Xu, W. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Invest Actions. Lab Invest Actions. 2020, 100, 342–352.
|
[22] |
Mahran, Y.F.; Badr, A.M.; Aldosari, A.; Bin-Zaid, R.; Alotaibi, H.N. Carvacrol and thymol modulate the cross-talk between TNF-α and IGF-1 signaling in radiotherapy-induced ovarian failure. Oxid. Med. Cell Longev. 2019, 2019, 3173745.
|
[23] |
Stanley, J.A.; Arosh, J.A.; Burghardt, R.C.; Banu, S.K. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown. Toxicol. Appl. Pharmacol. 2015, 289, 58–69.
|
[24] |
Wang, M. Exploring the analgesic mechanism of electroacupuncture labor pain from MAPK/ERK signaling pathway. Guangxi Univ. Tradit. Chin. Med. 2016.
|
[25] |
Arthur, J.S.C.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013, 13, 679–692.
|
[26] |
Zhu, C.F.; Qi, X.L.; Chen, Y.N.; Sun, B.; Dai, Y.L.; Gu, Y. PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in IGF-1-induced VEGF-C upregulation in breast cancer. J. Cancer Res. Clin. Oncol. 2011, 137, 1587–1594.
|
[27] |
Li, Z.W.; Li, C.L.; Du, L.L.; Zhou, Y.; Wu, W. Human chorionic gonadotropin β induces migration and invasion via activating ERK1/2 and MMP-2 in human prostate cancer DU145 cells. PLoS One. 2013, 8, e54592.
|
[28] |
Liu, T.; Lin, J.J.; Chen, C.; Nie, X.L.; Dou, F.F.; Chen, J.L.; Wang, Z.X.; Gong, Z.B. MicroRNA-146b-5p overexpression attenuates premature ovarian failure in mice by inhibiting the Dab2ip/Ask1/p38-Mapk pathway and γH2A.X phosphorylation. Cell Prolif. 2021, 54, e12954.
|
[29] |
Yin, N.; Wang, Y.L.; Lu, X.Y.; Liu, R.R.; Zhang, L.S.; Zhao, W.; Yuan, W.W.; Luo, Q.Q.; Wu, H.; Luan, X.Y.; Zhang, H.Q. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res. Ther. 2018, 9, 37. doi: 10.1186/s13287-018-0772-x.
|
[30] |
Zhou, J.L.; Yao, W.; Li, C.Y.; Wu, W.J.; Li, Q.F.; Liu, H.L. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis. 2017, 8, e3001.
|
[31] |
Alam, H.; Weck, J.; Maizels, E.; Park, Y.; Lee, E.J.; Ashcroft, M.; Hunzicker-Dunn, M. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology. 2009, 150, 915–928.
|
[32] |
Alam, H.; Maizels, E.T.; Park, Y.; Ghaey, S.; Feiger, Z.J.; Chandel, N.S.; Hunzicker-Dunn, M. Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J. Biol. Chem. 2004, 279, 19431–19440.
|
[33] |
Baddela, V.S.; Sharma, A.; Michaelis, M.; Vanselow, J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Sci. Rep. 2020, 10, 3906.
|
[34] |
Park, J.M.; Park, Y.J.; Koh, I.; Kim, N.K.; Baek, K.H.; Yun, B.O.; Lee, K.J.; Song, J.Y.; Lee,U.; Kwack, K.B. Association of an APBA3 Missense Variant with Risk of Premature Ovarian Failure in the Korean Female Population. J. Pers. Med. 2020, 10, 193.
|
[35] |
Zhou, F.R.; Song, Y.F.; Liu, X.; Zhang, C.; Li, F.; Hu, R.N.; Huang, Y.J.; Ma, W.W.; Song, K.K.; Zhang, M.M. Si-Wu-Tang facilitates ovarian function through improving ovarian microenvironment and angiogenesis in a mouse model of premature ovarian failure. J. Ethnopharmacol. 2021, 280, 114431.
|
[36] |
Wu, L.X.; Zhang, Z.H.; Pan, X.Y.; Wang, Z.C. Expression and contribution of the HIF-1α/VEGF signaling pathway to luteal development and function in pregnant rats. Mol. Med. Rep. 2015, 12, 7153–7159.
|
[37] |
Yang, M.; Wang, L.; Wang, X.R.; Wang, X.Z.; Yang, Z.Q.; Li, J.X. IL-6 promotes FSH-induced VEGF expression through JAK/STAT3 signaling pathway in bovine granulosa cells. Cell Physiol. Biochem. 2017, 44, 293–302.
|
[1] | 朱美玲, 张基荣, 张秋荣, 林羽, 李小艳, 许文, 徐伟. 基于网络药理学和化学计量学对中成药质量控制方法研究: 以活络散为例[J]. 中国药学(英文版), 2024, 33(9): 819-836. |
[2] | 李霞, 程贝贝, 谭骏岚, 万佳婧, 王宇红, 戴爱国. 黄芪主成分槲皮素通过MAPK通路调控PASMCs铁死亡抗低氧性肺动脉高压的研究[J]. 中国药学(英文版), 2024, 33(8): 714-729. |
[3] | 魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646. |
[4] | 张啸, 钟叶, 胡永生, 王博龙. 《肿瘤良方大全》中肝癌用药规律挖掘及其核心药对机制分析[J]. 中国药学(英文版), 2024, 33(7): 647-658. |
[5] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[6] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
[7] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
[8] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
[9] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
[10] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
[11] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[12] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[13] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
[14] | 张弘, 张莎莎, 王焕芸, 梁越, 武世奎, 孙丽君, 夏慧敏, 白云霞, 张慧文. 基于血清药物化学和网络药理学的荜茇抗胃溃疡药效物质基础分析[J]. 中国药学(英文版), 2024, 33(2): 156-168. |
[15] | 王丹. 基于网络药理学探讨中药逍遥丸治疗失眠的药理机制[J]. 中国药学(英文版), 2024, 33(2): 169-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||