[1] Antonelli, M.; Kushner, I. It's time to redefine inflammation. FASEB. J. 2017, 31, 1787-1791.
[2] Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016, 529, 307-315.
[3] Weber, G.F.; Chousterman, B.G.; He, S.; Fenn, A.M.; Nairz, M.; Anzai, A.; Brenner, T.; Uhle, F.; Iwamoto, Y.; Robbins, C.S.; Noiret, L.; Maier, S.L.; Zönnchen, T.; Rahbari, N.N.; Schölch, S.; Klotzsche-von, Ameln. A.; Chavakis, T.; Weitz, J.; Hofer, S.; Weigand, M.A.; Nahrendorf, M.; Weissleder, R.; Swirski, F.K. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science. 2015, 347, 1260-1265.
[4] Couzin-Frankel, J. Cardiovascular disease. Massive trials to test inflammation hypothesis. Science. 2012, 337, 1158.
[5] Marx, J. Cancer research. Inflammation and cancer: the link grows stronger. Science. 2004, 306, 966-968.
[6] Ejlerskov, P.; Hultberg, J.G.; Wang, J.; Carlsson, R.; Ambjorn, M.; Kuss, M.; Liu, Y.; Porcu, G.; Kolkova, K.; Friis, Rundsten. C.; Ruscher, K.; Pakkenberg, B.; Goldmann, T.; Loreth, D.; Prinz, M.; Rubinsztein, D.C.; Issazadeh-Navikas, S. Lack of Neuronal IFN-beta-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell. 2015, 163, 324-339.
[7] Patel, M.N.; Carroll, R.G.; Galvan-Pena, S.; Mills, E.L.; Olden, R.; Triantafilou, M.; Wolf, A.I.; Bryant, C.E.; Triantafilou, K.; Masters, S.L. Inflammasome Priming in Sterile Inflammatory Disease. Trends. Mol. Med. 2017, 23, 165-180.
[8] Storek, K.M.; Monack, D.M. Bacterial recognition pathways that lead to inflammasome activation. Immunol. Rev .2015, 265, 112-129.
[9] Rosadini, C.V.; Kagan, J.C. Early innate immune responses to bacterial LPS. Curr. Opin. Immunol. 2016, 44, 14-19.
[10] Medzhitov, R.; Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 2009, 9, 692-703.
[11] Ghosh, S.; Banerjee, S.; Sil, P.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food. Chem. Toxicol. 2015, 83, 111-124.
[12] Nakai, R.; Fukuda, S.; Kawase, M.; Yamashita, Y.; Ashida, H. Curcumin and its derivatives inhibit 2,3,7,8,-tetrachloro-dibenzo-p-dioxin-induced expression of drug metabolizing enzymes through aryl hydrocarbon receptor-mediated pathway. Biosci. Biotechnol. Biochem. 2017, 1, 1-13.
[13] Gan, Y.X.; Zheng, S.C.; Baak, J.P.; Zhao, S.L.; Zheng, Y.F.; Luo, N.N.; Liao, W.; Fu, C.M. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis. Acta. Pharm. Sin. B. 2015, 5, 590-595.
[14] Buhrmann, C.; Mobasheri, A.; Busch, F.; Aldinger, C.; Stahlmann, R.; Montaseri, A.; Shakibaei, M. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2011, 286, 28556-28566.
[15] Zhong, W.H.; Qian, K.J.; Xiong, J.B.; Ma, K.; Wang, A.Z.; Zou, Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-kappaB related signaling. Biomed. Pharmacother. 2016, 83, 302-313.
[16] D’Amours, D.; Sallmann, F.R.; Dixit, V.M.; Poirier, G.G. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J. Cell. Sci. 2001, 114, 3771-3778.
[17] Kraus, W.L.; Hottiger, M.O. PARP-1 and gene regulation: progress and puzzles. Mol. Aspects. Med. 2013, 34, 1109-1123.
[18] Camps, J.; Erdos, M.R.; Ried, T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus. 2015, 6, 8-14.
[19] Kumari, A.; Dash, D.; Singh, R. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-alpha and TGF-beta1) in murine model. Inflammopharmacology. 2017, 25, 329-341.
[20] Dou, H.Q.; Shen, R.H.; Tao, J.X.; Huang, L.C.; Shi, H.Z.; Chen, H.; Wang, Y.X.; Wang, T. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/beta-Catenin Pathways via miR-130a. Front. Pharmacol. 2017. This article can be found online at https://doi.org/10.3389/fphar.2017.00877.
[21] Zhang, L.; Diao, R.Y.; Duan, Y.G.; Yi, T.H.; Cai, Z.M. In vitro antioxidant effect of curcumin on human sperm quality in leucocytospermia. Andrologia. 2017. This article can be found online at https://doi.org /10.1111/and.12760.
[22] Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits alpha-synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model. Inflammopharmacology. 2018. This article can be found online at https://doi.org/ 10.1007/s10787-017-0402-8.
[23] Guglielmo, A.; Sabra, A.; Elbery, M.; Cerveira, M.M.; Ghenov, F.; Sunasee, R.; Ckless, K. A mechanistic insight into curcumin modulation of the IL-1beta secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem. Biol. Interact. 2017, 274, 1-12.
[24] Ma, F.Y.; Liu, F.; Ding, L.; You, M.; Yue, H.M.; Zhou, Y.J.; Hou, Y.Y. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm. Biol. 2017, 55, 1263-1273.
[25] Zhu, H.T.; Bian, C.; Yuan, J.C.; Chu, W.H.; Xiang, X.; Chen, F.; Wang, C.S.; Feng, H.; Lin, J.K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation. 2014. This article can be found online at https://doi.org/ 10.1186/1742-2094-11-59.
[26] Guimaraes, M.R.; Leite, F.R.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C.J. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch. Oral. Biol. 2013, 58, 1309-1317.
[27] Jacobs, M.D.; Harrison, S.C. Structure of an IkappaBal-pha/NF-kappaB complex. Cell. 1998, 95, 749-758.
[28] Xing, Y.J.; Yang, Y.; Zhou, F.; Wang, J.K. Characterization of genome-wide binding of NF-kappaB in TNFalpha-stimulated HeLa cells. Gene. 2013, 526, 142-149.
[29] Wang, Z.; Chen, G.Z.; Chen, L.Y.; Liu, X.; Fu, W.T.; Zhang, Y.L.; Li, C.L.; Liang, G.; Cai, Y.P. Insights into the binding mode of curcumin to MD-2: studies from molecular docking, molecular dynamics simulations and experimental assessments. Mol. Biosyst. 2015, 11, 1933-1938.
[30] Zhao, F.; Gong, Y.D.; Hu, Y.; Lu, M.H.; Wang, J.; Dong, J.X.; Chen, D.Q.; Chen, L.; Fu, F.H.; Qiu, F. Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: translocation of nuclear factor-kappaB as potential target. Mol. Med. Rep. 2015, 11, 3087-3093.
[31] Zhong, F.; Chen, H.; Han, L.; Jin, Y.M.; Wang, W.M. Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biol. Pharm. Bull. 2011, 34, 226-232.
[32] Zerfaoui, M.; Errami, Y.; Naura, A.S.; Suzuki, Y.; Kim, H.; Ju, J.H.; Liu, T.; Hans, C.P.; Kim, J.G.; Abd Elmageed, Z.Y.; Koochekpour, S.; Catling, A.; Boulares, A.H. Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J. Immunol. 2010, 185, 1894-1902.
[33] van Steensel, B.; Belmont, A.S. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell. 2017, 169, 780-791.
[34] Gerace, L.; Huber, M.D. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 2012, 177, 24-31.
[35] Butin-Israeli, V.; Adam, S.A.; Jain, N.; Otte, G.L.; Neems, D.; Wiesmuller, L.; Berger, S.L.; Goldman, R.D. Role of lamin b1 in chromatin instability. Mol. Cell. Biol. 2015, 35, 884-898.
[36] Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434, 917-921.
[37] Zhou, H.Y.; Dickson, M.E.; Kim, M.S.; Bassel-Duby, R.; Olson, E.N. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc. Natl .Acad. Sci. USA. 2015, 112, 11864-11869.
[38] Ru, Y.X.; Zhao, S.X.; Dong, S.X.; Liang, H.Y.; Wang, Y. Systematic alteration of apoptosis: a review with ultrastructural observations on leukemia cells in vivo. Ultrastruct. Pathol. 2017, 42, 1-9.
[39] Zikaki, K.; Aggeli, I.K.; Gaitanaki, C.; Beis, I. Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis. 2014, 19, 958-974. |