| [1] |
Peng, Y.P.; Fu, Y. Advancements in glucagon-like peptide-1 receptor agonist therapy for type 2 diabetes. J. Chin. Pharm. Sci. 2024, 33, 667–684.
|
| [2] |
Cahn, A.; Shoshan, A.; Sagiv, T.; Yesharim, R.; Goshen, R.; Shalev, V.; Raz, I. Prediction of progression from pre-diabetes to diabetes: development and validation of a machine learning model. Diabetes Metab. Res. Rev. 2020, 36, e3252.
|
| [3] |
Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020, 25, 1987.
|
| [4] |
Xue, J.T.; Chen, H.; Xiong, D.M.; Huang, G.; Ai, H.; Liang, Y.; Yan, X.Y.; Gan, Y.; Chen, C.; Chao, R.B.; Ye, L.M. Noninvasive measurement of glucose in artificial plasma with near-infrared and Raman spectroscopy. Appl. Spectrosc. 2014, 68, 428–433.
|
| [5] |
Hermayer, K.L.; Loftley, A.S.; Reddy, S.; Narla, S.N.; Epps, N.A.; Zhu, Y.S. Challenges of inpatient blood glucose monitoring: standards, methods, and devices to measure blood glucose. Curr. Diab. Rep. 2015, 15, 10.
|
| [6] |
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 2005, 20, 2435–2453.
|
| [7] |
Yue, Y.; Zhenzhi, S.; Chenxi, L.; Wenliang, C.; Kexin, X. Simulation and validation of the radial reference point in non-invasive blood glucose sensing by NIR. Nanotechno. Precis. Eng. 2010, 8, 114–119.
|
| [8] |
Chuah, Z.M.; Paramesran, R.; Thambiratnam, K.; Poh, S.C. A two-level partial least squares system for non-invasive blood glucose concentration prediction. Chemom. Intell. Lab. Syst. 2010, 104, 347–351.
|
| [9] |
Xue, J.T.; Wu, C.J.; Wang, L.L.; Jiang, S.; Huang, G.; Zhang, J.L.; Wen, S.L.; Ye, L.M. Dynamic prediction models for alkaloid content using NIR technology for the study and online analysis of parching in Areca Seed. Food Chem. 2011, 126, 725–730.
|
| [10] |
Xue, J.T.; Wu, C.J.; Wang, L.L.; Zhang, J.L.; Huang, G.; Jiang, S.; Wen, S.L.; Liang, Y.; Chao, R.B.; Chen, C.; Ye, L.M. Identification of the types of parched Areca Seed by near Infrared spectroscopy. Asian J. Chem. 2012, 24, 822–826.
|
| [11] |
Xiao, X.; Li, C.Y.; Wang, C.Y.; Zhu, H.Q.; Song, L.F.; Liu, X.L.; Lu, Y.S.; Yang, P.F.; Zhang, N.; Xue, J.T. Hypoglycemic effect and active ingredients screening of Isodon Japonicus based on network pharmacology and experimental validation. Arab. J. Chem. 2023, 16, 105108.
|
| [12] |
Sun, L.L.; Yang, Z.G.; Zhao, W.; Chen, Q.; Bai, H.Y.; Wang, S.S.; Yang, L.; Bi, C.M.; Shi, Y.B.; Liu, Y.Q. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. J. Ethnopharmacol. 2022, 283, 114699.
|
| [13] |
Lu, Z.Q.; Huang, M.L.; Lin, H.X.; Wang, G.X.; Li, H.L. Network pharmacology and molecular docking approach to elucidate the mechanisms of Liuwei Dihuang pill in diabetic osteoporosis. J. Orthop. Surg. Res. 2022, 17, 314.
|
| [14] |
Heigl, N.; Greiderer, A.; Petter, C.H.; Kolomiets, O.; Siesler, H.W.; Ulbricht, M.; Bonn, G.K.; Huck, C.W. Simultaneous determination of the micro-, meso-, and macropore size fractions of porous polymers by a combined use of Fourier transform near-infrared diffuse reflection spectroscopy and multivariate techniques. Anal. Chem. 2008, 80, 8493–8500.
|
| [15] |
Niu, X.Y.; Zhao, Z.L.; Jia, K.J.; Li, X.T. A feasibility study on quantitative analysis of glucose and fructose in lotus root powder by FT-NIR spectroscopy and chemometrics. Food Chem. 2012, 133, 592–597.
|
| [16] |
Sivakesava, S.; Irudayaraj, J.; Ali, D. Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques. Process. Biochem. 2001, 37, 371–378.
|