中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (6): 481-494.DOI: 10.5246/jcps.2024.06.036
• 【综述】 • 下一篇
收稿日期:
2024-01-15
修回日期:
2024-02-25
接受日期:
2024-03-07
出版日期:
2024-06-30
发布日期:
2024-06-30
通讯作者:
付颖
Received:
2024-01-15
Revised:
2024-02-25
Accepted:
2024-03-07
Online:
2024-06-30
Published:
2024-06-30
Contact:
Ying Fu
Supported by:
摘要:
肌少症是一种肌肉量减少和(或)肌肉功能下降的疾病, 极大地增加了老年人跌倒、骨折甚至死亡的风险。糖尿病可并发肌少症, 但其病因及机制尚不明确。而且, 2型糖尿病患者使用的抗糖尿病药物, 除了抗糖尿病作用外, 还可以通过不同的机制作用于骨骼肌, 影响蛋白质合成与分解之间的平衡, 从而导致肌少症的发生。本文阐述了抗糖尿病药物对肌少症的潜在作用机制, 并提供了相关的临床研究和数据。
Supporting:
谭莅唐, 付颖. 抗糖尿病药物对肌少症影响的研究进展[J]. 中国药学(英文版), 2024, 33(6): 481-494.
Litang Tan, Ying Fu. Exploring the impact of anti-diabetic medications on sarcopenia: a comprehensive review[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 481-494.
[1] |
Kadoguchi, T.; Shimada, K.; Miyazaki, T.; Kitamura, K.; Kunimoto, M.; Aikawa, T.; Sugita, Y.; Ouchi, S.; Shiozawa, T.; Yokoyama-Nishitani, M.; Fukao, K.; Miyosawa, K.; Isoda, K.; Daida, H. Promotion of oxidative stress is associated with mitochondrial dysfunction and muscle atrophy in aging mice. Geriatr. Gerontol. Int. 2019, 20, 78–84.
|
[2] |
Al Saedi, A.; Debruin, D.A.; Hayes, A.; Hamrick, M. Lipid metabolism in sarcopenia. Bone. 2022, 164, 116539.
|
[3] |
Hiromine, Y.; Noso, S.; Rakugi, H.; Sugimoto, K.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Osawa, H.; Tabara, Y.; Ikegami, H. Poor glycemic control rather than types of diabetes is a risk factor for sarcopenia in diabetes mellitus: the MUSCLES-DM study. J. Diabetes Investig. 2022, 13, 1881–1888.
|
[4] |
Bhardwaj, G.; Penniman, C.M.; Jena, J.; Suarez Beltran, P.A.; Foster, C.; Poro, K.; Junck, T.L.; Hinton, A.O. Jr, Souvenir, R.; Fuqua, J.D.; Morales, P.E.; Bravo-Sagua, R.; Sivitz, W.I.; Lira, V.A.; Abel, E.D.; O'Neill, B.T. Insulin and IGF-1 receptors regulate complex I-dependent mitochondrial bioenergetics and super complexes via FoxOs in muscle. J. Clin. Invest. 2021, 131, e146415.
|
[5] |
Wang, W.H.; Gu, X.C.; Cao, Z.Y.; Wang, X.J.; Lei, Y.M.; Xu, X.L.; Wang, S.W.; Wu, T.; Bao, Z. A potential correlation between adipokines, skeletal muscle function and bone mineral density in middle-aged and elderly individuals. Lipids Health Dis. 2023, 22, 111.
|
[6] |
Sato, M.; Fujita, H.; Yokoyama, H.; Mikada, A.; Horikawa, Y.; Takahashi, Y.; Yamada, Y.; Waki, H.; Narita, T. Relationships among postprandial plasma active GLP-1 and GIP excursions, skeletal muscle mass, and body fat mass in patients with type 2 diabetes treated with either miglitol, sitagliptin, or their combination: a secondary analysis of the MASTER study. J. Clin. Med. 2023, 12, 3104.
|
[7] |
Sencan, C.; Dost, F.S.; Ates Bulut, E.; Isik, A.T. DPP4 inhibitors as a potential therapeutic option for sarcopenia: a 6-month follow-up study in diabetic older patients. Exp. Gerontol. 2022, 164, 111832.
|
[8] |
Koshizaka, M.; Ishikawa, K.; Ishibashi, R.; Maezawa, Y.; Sakamoto, K.; Uchida, D.; Nakamura, S.; Yamaga, M.; Yokoh, H.; Kobayashi, A.; Onishi, S.; Kobayashi, K.; Ogino, J.; Hashimoto, N.; Tokuyama, H.; Shimada, F.; Ohara, E.; Ishikawa, T.; Shoji, M.; Ide, S.; Ide, K.; Baba, Y.; Hattori, A.; Kitamoto, T.; Horikoshi, T.; Shimofusa, R.; Takahashi, S.; Nagashima, K.; Sato, Y.; Takemoto, M.; Newby, L.K.; Yokote, K.; Group, P.V.S. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: Subanalysis of a prospective, randomized, controlled study (PRIME-V study). J. Diabetes Investig. 2021, 12, 200–206.
|
[9] |
Ishii, S.; Nagai, Y.; Kato, H.; Fukuda, H.; Tanaka, Y. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on muscle mass and the muscle/fat ratio in patients with type 2 diabetes. J. Clin. Med. Res. 2020, 12, 122–126.
|
[10] |
Rizzo, M.R.; Barbieri, M.; Marfella, R.; Paolisso, G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012, 35, 2076–2082.
|
[11] |
Rizzo, M.R.; Barbieri, M.; Fava, I.; Desiderio, M.; Coppola, C.; Marfella, R.; Paolisso, G. Sarcopenia in elderly diabetic patients: role of dipeptidyl peptidase 4 inhibitors. J. Am. Med. Dir. Assoc. 2016, 17, 896–901.
|
[12] |
Zhang, X.L.; Zhao, Y.; Chen, S.B.; Shao, H. Anti-diabetic drugs and sarcopenia: emerging links, mechanistic insights, and clinical implications. J. Cachexia Sarcopenia Muscle. 2021, 12, 1368–1379.
|
[13] |
Mele, A.; Calzolaro, S.; Cannone, G.; Cetrone, M.; Conte, D.; Tricarico, D. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle. Pharmacol. Res. Perspect. 2014, 2, e00028.
|
[14] |
Schemke, S.; de Wit, C. KATP channels and NO dilate redundantly intramuscular arterioles during electrical stimulation of the skeletal muscle in mice. Pflügers Arch. Eur. J. Physiol. 2021, 473, 1795–1806.
|
[15] |
Ma, R.C.W. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol. 2014, 2, 6–7.
|
[16] |
Jiang, L.L.; Xu, X.H.; Luo, M.H.; Wang, H.Y.; Ding, B.; Yan, R.N.; Hu, Y.; Ma, J.H. Association of acarbose with decreased muscle mass and function in patients with type 2 diabetes: a retrospective, cross-sectional study. Diabetes Ther. 2021, 12, 2955–2969.
|
[17] |
Zhu, Q.B.; Tong, Y.Z.; Wu, T.X.; Li, J.Q.; Tong, N.W. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an eastern or western diet: a systematic meta-analysis. Clin. Ther. 2013, 35, 880–899.
|
[18] |
Wolf, V.L.W.; Breder, I.; de Carvalho, L.S.F.; Soares, A.A.S.; Cintra, R.M.; Barreto, J.; Munhoz, D.B.; Kimura-Medorima, S.T.; Nadruz, W.; Guerra-Júnior, G.; Quinaglia, T.; Muscelli, E.; Sposito, A.C.; Investigators, A.B. Dapagliflozin increases the lean-to total mass ratio in type 2 diabetes mellitus. Nutr. Diabetes. 2021, 11, 17.
|
[19] |
Kitazawa, T.; Seino, H.; Ohashi, H.; Inazawa, T.; Inoue, M.; Ai, M.; Fujishiro, M.; Kuroda, H.; Yamada, M.; Anai, M.; Ishihara, H. Comparison of tofogliflozin versus glimepiride as the third oral agent added to metformin plus a dipeptidyl peptidase-4 inhibitor in Japanese patients with type 2 diabetes: a randomized, 24-week, open-label, controlled trial (STOP-OB). Diabetes Obes. Metab. 2020, 22, 1659–1663.
|
[20] |
Sugimoto, K.; Ikegami, H.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Tabara, Y.; Osawa, H.; Hiromine, Y.; Rakugi, H. Glycemic control and insulin improve muscle mass and gait speed in type 2 diabetes: the MUSCLES-DM study. J. Am. Med. Dir. Assoc. 2021, 22, 834–838.e1.
|
[21] |
Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Insulin treatment attenuates decline of muscle mass in Japanese patients with type 2 diabetes. Calcif. Tissue Int. 2017, 101, 1–8.
|
[22] |
Ferrari, U.; Then, C.; Rottenkolber, M.; Selte, C.; Seissler, J.; Conzade, R.; Linkohr, B.; Peters, A.; Drey, M.; Thorand, B. Longitudinal association of type 2 diabetes and insulin therapy with muscle parameters in the KORA-Age study. Acta Diabetol. 2020, 57, 1057–1063.
|
[23] |
Imre, E.; Apaydin, T.; Gunhan, H.G.; Yavuz, D.G. Determinants of high-dose insulin usage and upper extremity muscle strength in adult patients with type 2 diabetes. Can. J. Diabetes. 2021, 45, 341–345.
|
[24] |
Krzykała, M.; Domaszewska, K.; Woźniewicz-Dobrzyńska, M.; Kryściak, J.; Konarska, A.; Araszkiewicz, A.; Zozulińska-Ziółkiewicz, D.; Gawrecki, A.; Biegański, G.; Konarski, J.M. Characteristics of selected somatic and motor abilities of youth soccer players with diabetes type 1 treated with insulin pump therapy. Int. J. Environ. Res. Public Health. 2021, 18, 3493.
|
[25] |
Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; Wojtaszewski, J.F.P.; Viollet, B.; Lantier, L. AMPK in skeletal muscle function and metabolism. FASEB J. 2018, 32, 1741–1777.
|
[26] |
Senesi, P.; Montesano, A.; Luzi, L.; Codella, R.; Benedini, S.; Terruzzi, I. Metformin treatment prevents sedentariness related damages in mice. J. Diabetes Res. 2016, 2016, 8274689.
|
[27] |
Kanigur Sultuybek, G.; Soydas, T.; Yenmis, G. NF-κB as the mediator of metformin’s effect on ageing and ageing-related diseases. Clin. Exp. Pharmacol. Physiol. 2019, 46, 413–422.
|
[28] |
Petrocelli, J.J.; McKenzie, A.I.; de Hart, N.M.; Reidy, P.; Mahmassani, Z.; Keeble, A.R.; Kaput, K.L.; Wahl, M.P.; Rondina, M.; Marcus, R.; Welt, C.; Holland, W.; Funai, K.; Fry, C.; Drummond, M. Disuse‐induced muscle fibrosis, cellular senescence, and senescence‐associated secretory phenotype in older adults are alleviated during re‐ambulation with metformin pre‐treatment. Aging Cell. 2023, e13936.
|
[29] |
Zhu, Y.Q.; Chen, X.; Geng, S.S.; Li, Q.Q.; Li, Y.; Yuan, H.X.; Jiang, H. Identification of the cuproptosis-related hub genes and therapeutic agents for sarcopenia. Front. Genet. 2023, 14, 1136763.
|
[30] |
Yang, Y.F.; Liao, Z.Y.; Xiao, Q. Metformin ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating intramuscular lipid accumulation and glucose utilization. Biochem. Biophys. Res. Commun. 2020, 533, 1226–1232.
|
[31] |
Ai, Y.Q.; Xu, R.X.; Liu, L.X. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021, 13, 93.
|
[32] |
Liu, Q.S. Thesis, Tianjin Agricultural University. 2021.
|
[33] |
Kang, M.J.; Moon, J.; Lee, J.O.; Kim, J.H.; Jung, E.J.; Kim, S.J.; Oh, J.Y.; Wu, S.W.; Lee, P.; Park, S.H.; Kim, H.S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J. Cachexia Sarcopenia Muscle. 2022, 13, 605–620.
|
[34] |
McKenzie, A.I.; Mahmassani, Z.S.; Petrocelli, J.J.; de Hart, N.M.M.P.; Fix, D.K.; Ferrara, P.J.; LaStayo, P.C.; Marcus, R.L.; Rondina, M.T.; Summers, S.A.; Johnson, J.M.; Trinity, J.D.; Funai, K.; Drummond, M.J. Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: a randomized controlled trial. Exp. Gerontol. 2022, 163, 111804.
|
[35] |
Neumiller J.J.; White J.R.; Campbell, R.K. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010, 70, 377–385.
|
[36] |
Zeng, Y.H.; Liu, S.C.; Lee, C.C.; Sun, F.J.; Liu, J.J. Effect of empagliflozin versus linagliptin on body composition in Asian patients with type 2 diabetes treated with premixed insulin. Sci. Rep. 2022, 12, 17065.
|
[37] |
Han, J.X.; Luo, L.L.; Wang, Y.C.; Miyagishi, M.; Kasim, V.; Wu, S.R. SGLT2 inhibitor empagliflozin promotes revascularization in diabetic mouse hindlimb ischemia by inhibiting ferroptosis. Acta Pharmacol. Sin. 2023, 44, 1161–1174.
|
[38] |
Xie, K.Y.; Sugimoto, K.; Tanaka, M.; Akasaka, H.; Fujimoto, T.; Takahashi, T.; Onishi, Y.; Minami, T.; Yoshida, S.; Takami, Y.; Yamamoto, K.; Rakugi, H. Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats. J. Clin. Biochem. Nutr. 2023, 72, 248–255.
|
[39] |
Hata, S.; Okamura, T.; Kobayashi, A.; Bamba, R.; Miyoshi, T.; Nakajima, H.; Kitagawa, N.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Okada, H.; Ushigome, E.; Nakanishi, N.; Takakuwa, H.; Sasano, R.; Hamaguchi, M.; Fukui, M. Gut microbiota changes by an SGLT2 inhibitor, luseogliflozin, alters metabolites compared with those in a low carbohydrate diet in db/db mice. Nutrients. 2022, 14, 3531.
|
[40] |
Wu, H.Z.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54.
|
[41] |
Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; Jinnouchi, T. Dapagliflozin reduces fat mass without affecting muscle mass in type 2 diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476.
|
[42] |
Hajime, Y.; Masashi, T.; Takayuki, I.; Shinji, O.; Toru, K.; Noriko, S.A. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: a randomized, controlled trial. J. Diabetes Investig. 2020, 11, 653–661.
|
[43] |
Nugrahaningrum, D.A.; Marcelina, O.; Liu, C.P.; Wu, S.R.; Kasim, V. Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic hindlimb ischemia mice through PHD2/HIF-1α axis. Front. Pharmacol. 2020, 11, 1104.
|
[44] |
Yasuda, M.; Iizuka, K.; Kato, T.; Liu, Y.Y.; Ken, T.K.; Nonomura, K.; Mizuno, M.; Yabe, D. Sodium-glucose cotransporter 2 inhibitor and sarcopenia in a lean elderly adult with type 2 diabetes: a case report. J. Diabetes Investig. 2020, 11, 745–747.
|
[45] |
Langer, H.T.; Ramsamooj, S.; Dantas, E.; Murthy, A.; Ahmed, M.; Hwang, S.K.; Grover, R.; Pozovskiy, R.; Liang, R.J.; Queiroz, A.L.; Brown, J.C.; White, E.P.; Janowitz, T.; Goncalves, M.D. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. bioRxiv. 2023, DOI: 10.1101/2023.07.31.551241.
|
[46] |
Reusch, J.E.B.; Bridenstine, M.; Regensteiner, J.G. Type 2 diabetes mellitus and exercise impairment. Rev. Endocr. Metab. Disord. 2013, 14, 77–86.
|
[47] |
Reusch, J.E.B.; Regensteiner, J.G.; Watson, P.A. Novel actions of thiazolidinediones on vascular function and exercise capacity. Am. J. Med. 2003, 115, 69–74.
|
[48] |
Bastien, M.; Poirier, P.; Brassard, P.; Arsenault, B.J.; Bertrand, O.F.; Després, J.P.; Costerousse, O.; Piché, M.E. Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E65–E73.
|
[49] |
McClelland, T.J.; Fowler, A.J.; Davies, T.W.; Pearse, R.; Prowle, J.; Puthucheary, Z. Can Pioglitazone Be Used for Optimization of Nutrition in Critical Illness? A Systematic Review. JPEN. 2023, 47, 459–475.
|
[50] |
Shah, P.K.; Mudaliar, S.; Chang, A.R.; Aroda, V.; Andre, M.; Burke, P.; Henry, R.R. Effects of intensive insulin therapy alone and in combination with pioglitazone on body weight, composition, distribution and liver fat content in patients with type 2 diabetes. Diabetes Obes. Metab. 2011, 13, 505–510.
|
[51] |
Hassan, F.E.; Sakr, H.I.; Mohie, P.M.; Suliman, H.S.; Mohamed, A.S.; Attia, M.H.; Eid, D.M. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model. Ann. Med. 2021, 53, 1033–1041.
|
[52] |
Fiorentino, T.V.; Monroy, A.; Kamath, S.; Sotero, R.; Cas, M.D.; Daniele, G.; Chavez, A.O.; Abdul-Ghani, M.; Hribal, M.L.; Sesti, G.; Tripathy, D.; DeFronzo, R.A.; Folli, F. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism. 2021, 114, 154416.
|
[53] |
Yokoyama, I.; Yonekura, K.; Moritan, T.; Tateno, M.; Momose, T.; Ohtomo, K.; Inoue, Y.; Nagai, R. Troglitazone improves whole-body insulin resistance and skeletal muscle glucose use in type II diabetic patients. J. Nucl. Med. 2001, 42, 1005–1010.
|
[54] |
Shibuya, S.; Watanabe, K.; Sakuraba, D.; Abe, T.; Shimizu, T. Natural compounds that enhance motor function in a mouse model of muscle fatigue. Biomedicines. 2022, 10, 3073.
|
[55] |
Fan, D.M.; Wang, Y.; Liu, B.W.; Yin, F. Hypoglycemic drug liraglutide alleviates low muscle mass by inhibiting the expression of MuRF1 and MAFbx in diabetic muscle atrophy. J. Chin. Med. Assoc. 2022, 86, 166–175.
|
[56] |
Uchiyama, S.; Sada, Y.; Mihara, S.; Sasaki, Y.; Sone, M.; Tanaka, Y. Oral semaglutide induces loss of body fat mass without affecting muscle mass in patients with type 2 diabetes. J. Clin. Med. Res. 2023, 15, 377–383.
|
[57] |
Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Lavarra, V.; Triggiani, D.; Crudele, L.; Triggiani, V.; Sabbà, C.; De Pergola, G.; Piazzolla, G. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study. Front. Endocrinol. 2023, 14, 1240263.
|
[58] |
Keskin, L.; Yaprak, B. Comparison of the effect of liraglutide and metformin therapy on the disease regulation and weight loss in obese patients with Type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6813–6820.
|
[59] |
Chen, F.Q.; Xu, S.; Wang, Y.F.; Chen, F.; Cao, L.; Liu, T.T.; Huang, T.; Wei, Q.; Ma, G.J.; Zhao, Y.H.; Wang, D.F. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J. Diabetes Res. 2020, 2020, 1–10.
|
[60] |
Veelen, A.; Andriessen, C.; den Kamp, Y.O.; Erazo-Tapia, E.; de Ligt, M.; Mevenkamp, J.; Jörgensen, J.A.; Moonen-Kornips, E.; Schaart, G.; Esterline, R.; Havekes, B.; Oscarsson, J.; Schrauwen-Hinderling, V.B.; Phielix, E.; Schrauwen, P. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on substrate metabolism in prediabetic insulin resistant individuals: a randomized, double-blind crossover trial. Metabolism. 2023, 140, 155396.
|
[61] |
Op den Kamp, Y.J.M.; Gemmink, A.; de Ligt, M.; Dautzenberg, B.; Kornips, E.; Jorgensen, J.A.; Schaart, G.; Esterline, R.; Pava, D.A.; Hoeks, J.; Schrauwen-Hinderling, V.B.; Kersten, S.; Havekes, B.; Koves, T.R.; Muoio, D.M.; Hesselink, M.K.C.; Oscarsson, J.; Phielix, E.; Schrauwen, P. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol. Metab. 2022, 66, 101620.
|
[62] |
Matsuba, I.; Takihata, M.; Takai, M.; Maeda, H.; Kubota, A.; Iemitsu, K.; Umezawa, S.; Obana, M.; Kaneshiro, M.; Kawata, T.; Takuma, T.; Takeda, H.; Machimura, H.; Mokubo, A.; Motomiya, T.; Asakura, T.; Kikuchi, T.; Matsuzawa, Y.; Ito, S.; Miyakawa, M.; Terauchi, Y.; Kanamori, A. Effects of 1‐year treatment with canagliflozin on body composition and total body water in patients with type 2 diabetes. Diabetes. 2021, 23, 2614–2622.
|
[1] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[2] | 付颖, 刘思默, 马燕, 吴南楠. 钠-葡萄糖共转运蛋白2抑制剂卡格列净在2型糖尿病治疗中的新进展[J]. 中国药学(英文版), 2022, 31(8): 569-588. |
[3] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
[4] | 李睿, 孔燕茹. 利格列汀对初诊2型糖尿病患者炎症因子和动脉硬化的影响[J]. 中国药学(英文版), 2021, 30(8): 692-698. |
[5] | 李荣, 宋利华, 刘杰, 白杨, 杜玉茗, 林春华, 苏秀媛, 于宗学. 利格列汀对糖尿病Wistar大鼠心脏保护作用的研究[J]. 中国药学(英文版), 2021, 30(4): 334-346. |
[6] | 姚烨, 酒向飞, 王思媛, 卢炜, 周田彦. 西他列汀影响糖尿病大鼠中二肽基肽酶活性、胰岛素和血糖水平的基于机制的药物动力学/药效动力学模型研究[J]. 中国药学(英文版), 2018, 27(6): 371-382. |
[7] | 辛健, 徐向楠, 王玉平, 张振涛, 马宇衡. PPAR激动剂的开发与应用[J]. 中国药学(英文版), 2018, 27(4): 215-228. |
[8] | 管晓东, 马莉莉, 王国英, 海沙尔江·吾守尔, 满春霞, 韩晟, 史录文. 中国2型糖尿病患者胰岛素注射笔用针头重复使用的影响因素研究[J]. 中国药学(英文版), 2018, 27(1): 51-58. |
[9] | 洪艺华, 刘曈彤, 刘彦君, 吴竞轩, 杨晓改. 钒化合物通过活性氧水平的调节对PTEN表达缺失的前列腺癌细胞发挥更强的抑制作用[J]. 中国药学(英文版), 2017, 26(6): 432-439. |
[10] | 胡琴, 唐惠林, 邵宏. 基于肠促胰素药物治疗2型糖尿病合并非酒精性肝病的疗效和安全性的系统评价和meta分析[J]. 中国药学(英文版), 2016, 25(3): 206-214. |
[11] | 姚莉, 范芳芳, 胡兰, 赵生俊, 郑丽丽. 沙格列汀治疗成人2型糖尿病的有效性和安全性: 基于随机对照试验的meta分析[J]. 中国药学(英文版), 2016, 25(2): 128-139. |
[12] | 谢晓慧, 王菲, 崔家玉. 糖尿病管理中的肥胖问题及其干预[J]. 中国药学(英文版), 2015, 24(6): 412-418. |
[13] | 王子维, 王娜, 黄美玲, 杨晓达. 钒化合物对非糖尿病和II型糖尿病小鼠的长期毒性和降糖效果研究[J]. 中国药学(英文版), 2015, 24(11): 734-743. |
[14] | 白晓辉, 牛有红, 熊德彩, 吴艳芬, 李云森. GLP-1的N端修饰研究进展及其用于治疗II型糖尿病的应用前景[J]. 中国药学(英文版), 2015, 24(11): 701-711. |
[15] | 杨思敏, 姬利延, 阙琳玲, 王夔, 余四旺. 二甲双胍激活Nrf2信号并诱导抗氧化基因的表达[J]. 中国药学(英文版), 2014, 23(12): 837-843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||