中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (11): 911-922.DOI: 10.5246/jcps.2023.11.073
收稿日期:
2023-04-20
修回日期:
2023-05-16
接受日期:
2023-06-15
出版日期:
2023-12-02
发布日期:
2023-12-02
通讯作者:
靳怡然
作者简介:
基金资助:
Yuqian Zhang1, Haiying Niu2, Yiran Jin1,*()
Received:
2023-04-20
Revised:
2023-05-16
Accepted:
2023-06-15
Online:
2023-12-02
Published:
2023-12-02
Contact:
Yiran Jin
摘要:
基于中药分子机理的生物信息学分析工具(bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine, BATMAN-TCM)研究长春花治疗癌症的分子机制。应用BATMAN-TCM平台, 预测长春花的潜在作用靶点, 使用GeneCards数据库检索癌症靶点。然后利用Cytoscape 3.7.0软件构建化合物-疾病-靶点相互作用网络。针对长春花的抗癌靶点, 进行了基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析, 以确定长春花抗癌的基因功能。最后, 从长春花中筛选出9种活性成分, 构建了化合物-疾病-靶点网络。基于STRING建立的长春花靶点的PPI网络包括55个节点和328个相互作用关系。关键节点包括CTNNB1、JUN、VEGFA、ESR1、HIF1A、FOS、MTOR。此外, GO富集分析共确定了73个通路, 包括RNA聚合酶II特异性DNA结合转录因子结合、DNA结合转录因素结合、泛素蛋白连接酶结合、泛蛋白样蛋白连接酶类结合。此外, 在KEGG通路富集分析中, 获得了106条信号通路, 其中PI3K-Akt信号通路和HIF-1信号通路是与癌症相关的关键通路。本研究发现长春花通过多组分-多靶点-多途径的协同调控实现了抗癌作用, 为长春花的应用提供了理论依据和科学依据。
Supporting:
张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922.
Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922.
[1] |
Maryam, M.; Rusea, G.; Christina, Y. S. Y.; Mohd, N. Vinca Alkaloids. Int. J. Prcv. Med. 2013, 4, 1231–1235.
|
[2] |
Kumar, S.; Singh, B.; Singh, R. Catharanthus roseus (L.) G. don: a review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J. Ethnopharmacol. 2022, 284, 114647.
|
[3] |
Rajashekara, S.; Reena, D.; Mainavi, M.V.; Sandhya, L.S.; Baro, U. Biological isolation and characterization of Catharanthus roseus (L.) G. Don methanolic leaves extracts and their assessment for antimicrobial, cytotoxic, and apoptotic activities. BMC Complement. Med. Ther. 2022, 22, 328.
|
[4] |
Wu, X.; Xie, H.; Long, X.; Zhang, J.; Huang, T.; Hao, X.; Zhang, Y. Chemical Constituents of Catharanthus roseus. Chin. Pharm. J. 2017, 52, 631–636.
|
[5] |
Hou, W.B. Advances in studies on chemical constituents in Catharanthus roseus and their pharmacological activities. Drugs Clin. 2011, 26, 274–277.
|
[6] |
Zeng, Y.; Mei, W.; Dong, W.; Li, X.; Dai, H. Cytotoxic activity of four kinds of extracts of Catharanthus roseus (L.) G. Don. against human hepatoma cells. Chin. J. Tropical. Agric. 2012, 32, 41–43.
|
[7] |
Rischer, H.; Orešič, M.; Seppänen-Laakso, T.; Katajamaa, M.; Lammertyn, F.; Ardiles-Diaz, W.; Van Montagu, M.C.E.; Inzé, D.; Oksman-Caldentey, K.M.; Goossens, A. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA. 2006, 103, 5614–5619.
|
[8] |
Ferreres, F.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Sottomayor, M. New phenolic compounds and antioxidant potential of Catharanthus roseus. J. Agric. Food Chem. 2008, 56, 9967–9974.
|
[9] |
Levêque, D.; Jehl, F. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J. Clin. Pharmacol. 2007, 47, 579–588.
|
[10] |
Mustafa, N.R.; Verpoorte, R. Phenolic compounds in Catharanthus roseus. Phytochem. Rev. 2007, 6, 243–258.
|
[11] |
Qu, Y.; Easson, M.E.A.M.; Simionescu, R.; Hajicek, J.; Thamm, A.M.K.; Salim, V.; De Luca, V. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19 E-geissoschizine. Proc. Natl. Acad. Sci. USA. 2018, 115, 3180–3185.
|
[12] |
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.
|
[13] |
Guan, Y.; Zheng, X.; Yan, M.; Wu, H.; Zhang, G.; Lu, L. Analysis of effective components of Scutellaria baicalensis- Sophora japonica drug pair by UPLC-ESI-TOF/MS and network pharmacology analysis of its effect on chronic kidney disease. Chin. Tradit. Herb. Drugs. 2022, 53, 6388–6400.
|
[14] |
Zhang, Y.Q.; Li, Y.T.; Mao, X.A.; Yan, C.; Guo, X.D.; Guo, Q.Y.; Liu, Z.L.; Song, Z.Q.; Lin, N. Thyroid hormone synthesis: a potential target of a Chinese herbal formula Haizao Yuhu Decoction acting on iodine-deficient goiter. Oncotarget. 2016, 7, 51699–51712.
|
[15] |
Fang, J.S.; Wang, L.; Wu, T.; Yang, C.; Gao, L.; Cai, H.B.; Liu, J.H.; Fang, S.H.; Chen, Y.B.; Tan, W.; Wang, Q. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J. Ethnopharmacol. 2017, 196, 281–292.
|
[16] |
Xiao, Y.; Lin, Z.; Guo, J.; Chen, P.; Zhang, Y.; Zhang, P.; Su, Y. Study on the pharmacodynamic substances of Zhuanggu Jianxi Recipe in the treatment of knee osteoarthritis based on serum pharmacochemistry, network pharmacology and cell experiment. Tradit. Chin. Drug Res. Clin. Pharm. 2023, 34, 357–366.
|
[17] |
Cao, M.; Xu, L.; Xin, Z.; Fang, M.; Xing, X.; Chen, X.; Wang, C.; Wei, X.; Ren, W. Network pharmacology study of Fritillariae Thunbergii Bulbus-Trichosanthis Fructus compatibility for treating chronic obstructive pulmonary disease based on the BATMAN-TCM online analysis platform. Shandong Sci. 2021, 34, 10–20.
|
[18] |
Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R.; Bast, R.C.; Gansler, T.S.; Holland JF. Holland-Frei cancer medicine. 6thed. Hamilton (ON): BC Decker Inc. 2003.
|
[19] |
Chen, Q.; Lu, X.Y.; Guo, X.R.; Guo, Q.X.; Li, D.W. Metabolomics characterization of two Apocynaceae plants, Catharanthus roseus and vinca minor, using GC-MS and LC-MS methods in combination. Molecules. 2017, 22, 997.
|
[20] |
Zeng, Y.; Mei, W.; Zhuang, L.; Hong, K.; Dai, H. Study on cytotoxic activity of Catharanthus roseus (L.) G. Don. Human Cells. 2007, 1, 5–7.
|
[21] |
Chung, I.M.; Kim, J.J.; Chun, S.C. A new aliphatic glycoside constituent from the hairy root cultures of Catharanthus roseus. Asian J. Chem. 2008, 20, 642–648.
|
[22] |
Neuss, N.; Neuss, M.N. Chapter 6 therapeutic use of bisindole alkaloids from catharanthus. The Alkaloids: Chem. Pharm. 1990, 229–240.
|
[23] |
Kazemi, M.H.; Raoofi Mohseni, S.; Hojjat-Farsangi, M.; Anvari, E.; Ghalamfarsa, G.; Mohammadi, H.; Jadidi-Niaragh, F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J. Cell Physiol. 2018, 233, 2032–2057.
|
[24] |
Baggetto, L.G.; Testa-Parussini, R. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch. Biochem. Biophys. 1990, 283, 241–248.
|
[25] |
Nàger, M.; Sallán, M.C.; Visa, A.; Pushparaj, C.; Santacana, M.; Macià, A.N.; Yeramian, A.; Cantí, C.; Herreros, J. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 2018, 14, 619–636.
|
[26] |
Wang, S.J.; Yang, Z.; Gao, Y.; Li, Q.Z.; Su, Y.; Wang, Y.F.; Zhang, Y.; Man, H.; Liu, H.X. Pyruvate kinase, muscle isoform 2 promotes proliferation and insulin secretion of pancreatic β-cells via activating Wnt/CTNNB1 signaling. Biology. 2015.
|
[27] |
Canal, F.; Anthony, E.; Lescure, A.; Del Nery, E.; Camonis, J.; Perez, F.; Ragazzon, B.; Perret, C. A kinome siRNA screen identifies HGS as a potential target for liver cancers with oncogenic mutations in CTNNB1. BMC Cancer. 2015, 15, 1020.
|
[28] |
Lopez, B. P.; Kim, H.; Dewing, A. c-Jun regulates phosphoinositi de-dependent kinase 1 transcription: implication for Akt and protein kinase C activities and melanoma tumorigenesis. J. Biol. Chem. 2010, 285, 903–913.
|
[29] |
Li, X.A.; Hu, Z.H.; Shi, H.R.; Wang, C.; Lei, J.A.; Cheng, Y. Inhibition of VEGFA increases the sensitivity of ovarian cancer cells to chemotherapy by suppressing VEGFA-mediated autophagy. OncoTargets Ther. 2020, 13, 8161–8171.
|
[30] |
Yang, W.; He, X.; He, C.J.; Peng, L.N.; Xing, S.S.; Li, D.D.; Wang, L.; Jin, T.B.; Yuan, D.Y. Impact of ESR1 polymorphisms on risk of breast cancer in the Chinese Han population. Clin. Breast Cancer. 2021, 21, e235–e242.
|
[31] |
Iyer, N.V.; Kotch, L.E.; Agani, F.; Leung, S.W.; Laughner, E.; Wenger, R.H.; Gassmann, M.; Gearhart, J.D.; Lawler, A.M.; Yu, A.Y.; Semenza, G.L. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12, 149–162.
|
[32] |
Cimmino, F.; Avitabile, M.; Lasorsa, V.A.; Montella, A.; Pezone, L.; Cantalupo, S.; Visconte, F.; Corrias, M.V.; Iolascon, A.; Capasso, M. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med. Genet. 2019, 20, 37.
|
[33] |
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 2003, 3, 721–732.
|
[34] |
Ebright, R.Y.; Zachariah, M.A.; Micalizzi, D.S.; Wittner, B.S.; Niederhoffer, K.L.; Nieman, L.T.; Chirn, B.; Wiley, D.F.; Wesley, B.; Shaw, B.; Nieblas-Bedolla, E.; Atlas, L.; Szabolcs, A.; Iafrate, A.J.; Toner, M.; Ting, D.T.; Brastianos, P.K.; Haber, D.A.; Maheswaran, S. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat. Commun. 2020, 11, 6311.
|
[35] |
Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation, and immunity. Immunity. 2014, 41, 518–528.
|
[36] |
Ouyang, Y.; Li, J.; Tu, Y.; Sun, S. HIF1A is a prognostic biomarker of breast cancer and correlates with immunocyte infiltration. Chin. J. Cancer Biother. 2022, 29, 317–326.
|
[37] |
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619.
|
[38] |
Zhang, T.; Ma, Y.P.; Fang, J.S.; Liu, C.; Chen, L.R. A deregulated PI3K-AKT signaling pathway in patients with colorectal cancer. J. Gastrointest. Cancer. 2019, 50, 35–41.
|
[39] |
Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 2017, 45, 62–71.
|
[40] |
Shankar, E.; Weis, M.; Avva, J.; Shukla, S.; Shukla, M.; Sreenath, S.; Gupta, S. Complex systems biology approach in connecting PI3K-akt and NF-κB pathways in prostate cancer. Cells. 2019, 8, 201.
|
[41] |
Ruan, K.; Song, G.; Ouyang, G.L. Role of hypoxia in the hallmarks of human cancer. J. Cell Biochem. 2009, 107, 1053–1062.
|
[42] |
Song, J.K.; Chen, W.M.; Zhu, G.H.; Wang, W.; Sun, F.; Zhu, J.G. Immunogenomic profiling and classification of prostate cancer based on HIF-1 signaling pathway. Front. Oncol. 2020, 10, 1374.
|
[43] |
Guo, Y.X.; Mao, W.Y.; Jin, L.; Xia, L.Y.; Huang, J.; Liu, X.; Ni, P.; Shou, Q.Y.; Fu, H.Y. Flavonoid group of Smilax glabra roxb. regulates the anti-tumor immune response through the STAT3/HIF-1 signaling pathway. Front. Pharmacol. 2022, 13, 918975.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 杜浩鑫, 保琦, 李黄倩玉, 张逸晨, 海沙尔江·吾守尔, 史录文, 管晓东. 中国中老年癌症幸存者健康状况分析[J]. 中国药学(英文版), 2023, 32(9): 744-754. |
[5] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[6] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[7] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[8] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[9] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[10] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[11] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[12] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[13] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[14] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[15] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||