中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (11): 923-934.DOI: 10.5246/jcps.2023.11.074
收稿日期:
2023-05-18
修回日期:
2023-06-13
接受日期:
2023-08-23
出版日期:
2023-12-02
发布日期:
2023-12-02
通讯作者:
吕志刚
作者简介:
基金资助:
Daiying Zhou, Jing Chen, Zhigang Lv*()
Received:
2023-05-18
Revised:
2023-06-13
Accepted:
2023-08-23
Online:
2023-12-02
Published:
2023-12-02
Contact:
Zhigang Lv
摘要:
本研究旨在通过网络药理学和分子对接技术预测灯盏细辛治疗年龄相关性黄斑变性(AMD)的作用机制。首先, 从中药系统药理学数据库中获得灯盏细辛的12种活性成分和195个靶点, 另外从GeneCards、OMIM、Drugbank等疾病数据库中检索到1490个AMD相关靶点。两者取交集后, 获得9个活性成分和103个重叠靶基因。再根据Metascape数据库进行GO和KEGG富集分析得到4809个生物学过程和234条通路, 主要涉及细胞凋亡、氧化应激和炎症反应。接着采用Cytoscape软件中的Cytohubba插件或中心度值筛选预测关键活性成分: 木犀草素、槲皮素和山柰酚; 以及关键靶点: VEGFA、CASP3、TNF、TP53、AKT1、MMP9、IL-6、EGF、PTGS2和IL-1B。最后, 从RCSB PDB数据库下载核心蛋白的晶体构象, 通过AutoDock Vina和Pymol软件进行分子对接和可视化处理后, 发现木犀草素、槲皮素和黄芩素均能与其各自相对应的关键靶点(CASP3、IL-6和VEGFA)形成稳定的结合。因此, 我们预测灯盏细辛可能通过多成分、多靶点、多通路治疗AMD, 也为中药治疗AMD提供了理论参考。
Supporting:
周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934.
Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934.
Figure 2. Common targets-ingredient network. The red dot represents the common targets, the blue diamond represents the active components of the drug, and the size of the diamond represents the centrality of the components in this network.
Figure 5. GO enrichment analysis histogram. (A) Biological processes; (B) Molecular functions; (C) Cellular components. The straight length represents the number of enrichment targets, and the darker the color, the smaller the P value.
Figure 6. KEGG enrichment analysis bubble diagram. The bubble size represents the number of enrichment targets, and the darker the color, the smaller the P value.
[1] |
Armento, A.; Ueffing, M.; Clark, S.J. The complement system in age-related macular degeneration. Cell Mol. Life Sci. 2021, 78, 4487–4505.
|
[2] |
Chakravarthy, U.; Peto, T. Current perspective on age-related macular degeneration. JAMA. 2020, 324, 794.
|
[3] |
Wong, W.L.; Su, X.Y.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health. 2014, 2, e106–e116.
|
[4] |
Keenan, T.D.L.; Cukras, C.A.; Chew, E.Y. Age-related macular degeneration: epidemiology and clinical aspects. Adv. Exp. Med. Biol. 2021, 1256, 1–31.
|
[5] |
Campagne, M.V.; LeCouter, J.; Yaspan, B.L.; Ye, W.L. Mechanisms of age-related macular degeneration and therapeutic opportunities. J. Pathol. 2014, 232, 151–164.
|
[6] |
Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet. 2018, 392, 1147–1159.
|
[7] |
Wu, R.X.; Liang, Y.; Xu, M.; Fu, K.; Zhang, Y.L.; Wu, L.; Wang, Z. Advances in chemical constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of erigeron breviscapus. Front Pharmacol. 2021, 12, 656335.
|
[8] |
Fan, H.; Lin, P.; Kang, Q.; Zhao, Z.L.; Wang, J.; Cheng, J.Y. Metabolism and pharmacological mechanisms of active ingredients in Erigeron breviscapus. Curr. Drug Metab. 2021, 22, 24–39.
|
[9] |
Zhu, J.Y.; Chen, L.; Qi, Y.; Feng, J.; Zhu, L.; Bai, Y.J.; Wu, H.J. Protective effects of Erigeron breviscapus Hand.–Mazz. (EBHM) extract in retinal neurodegeneration models. Mol. Vis. 2018, 24, 315–325.
|
[10] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[11] |
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169.
|
[12] |
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613.
|
[13] |
Zhou, Y.Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.
|
[14] |
Yang, X.H.; Liu, H.H.; Liu, J.N.; Li, F.; Li, X.H.; Shi, L.L.; Chen, J.W. Rational selection of the 3D structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action. Chem. Res. Toxicol. 2016, 29, 1565–1570.
|
[15] |
Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y.; Study Group, M.A.R.I.A.A. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431.
|
[16] |
Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin, D.F.; Maguire, M.G.; Fine, S.L.; Ying, G.S.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.; Redford, M.; Ferris, F.L. 3rd. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012, 119, 1388–1398.
|
[17] |
Boyer, D.S.; Schmidt-Erfurth, U.; van Lookeren Campagne, M.; Henry, E.C.; Brittain, C. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina. 2017, 37, 819–835.
|
[18] |
MacLaren, R.E.; Bennett, J.; Schwartz, S.D. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016, 123, S98–S106.
|
[19] |
Wu, D.Y.; Wang, X.D.; Cai, J.M.; Li, Y.; Bi, M.; Gui, W.W.; Cao, H.M. Study on the mechanism of Danggui Buxue Decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment. J. Chin. Pharm. Sci. 2023, 32, 527.
|
[20] |
Dong, X.Y.; Qu, S.T. Erigeron breviscapus (vant.) hand-mazz.: a promising natural neuroprotective agent for Alzheimer’s disease. Front. Pharmacol. 2022, 13, 877872.
|
[21] |
Yang, L.; Tao, Y.W.; Luo, L.L.; Zhang, Y.; Wang, X.B.; Meng, X.L. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. J. Ethnopharmacol. 2022, 288, 114988.
|
[22] |
Gao, J.L.; Chen, G.; He, H.Q.; Liu, C.; Xiong, X.J.; Li, J.; Wang, J. Therapeutic effects of breviscapine in cardiovascular diseases: a review. Front. Pharmacol. 2017, 8, 289.
|
[23] |
Zhong, Y.S.; Xiang, M.H.; Ye, W.; Cheng, Y.; Jiang, Y.Q. Visual field protective effect of Erigeron breviscapus (vant.) hand. mazz. extract on glaucoma with controlled intraocular pressure. Drugs R D. 2010, 10, 75–82.
|
[24] |
Yin, S.; Wang, Z.F.; Duan, J.G.; Ji, L.; Lu, X.J. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int. J. Ophthalmol. 2015, 8, 1101–1106.
|
[25] |
Xi, J.X.; Rong, Y.Z.; Zhao, Z.F.; Huang, Y.H.; Wang, P.; Luan, H.L.; Xing, Y.; Li, S.Y.; Liao, J.; Dai, Y.; Liang, J.Y.; Wu, F.H. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. J. Ethnopharmacol. 2021, 271, 113855.
|
[26] |
Ye, J.Z.; Zeng, B.; Zhong, M.Y.; Li, H.C.; Xu, L.H.; Shu, J.X.; Wang, Y.F.; Yang, F.; Zhong, C.S.; Ye, X.J.; He, X.H.; Ouyang, D.Y. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm. Sin. B. 2021, 11, 112–126.
|
[27] |
Kaarniranta, K.; Blasiak, J.; Liton, P.; Boulton, M.; Klionsky, D.J.; Sinha, D. Autophagy in age-related macular degeneration. Autophagy. 2023, 19, 388–400.
|
[28] |
Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and its role in age-related macular degeneration. Cell Mol. Life Sci. 2016, 73, 1765–1786.
|
[29] |
Celkova, L.; Doyle, S.L.; Campbell, M. NLRP3 inflammasome and pathobiology in AMD. J. Clin. Med. 2015, 4, 172–192.
|
[30] |
Ildefonso, C.J.; Biswal, M.R.; Ahmed, C.M.; Lewin, A.S. The NLRP3 inflammasome and its role in age-related macular degeneration. Retinal. Degenerat. Dis. 2016, 854, 59–65.
|
[31] |
Dowling, J.K.; O’Neill, L.A.J. Biochemical regulation of the inflammasome. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 424–443.
|
[32] |
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.H.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 2009, 183, 787–791.
|
[33] |
Tseng, W.A.; Thein, T.; Kinnunen, K.; Lashkari, K.; Gregory, M.S.; D'Amore, P.A.; Ksander, B.R. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2013, 54, 110–120.
|
[34] |
Marneros, A.G. NLRP3 inflammasome blockade inhibits VEGF-A-induced age-related macular degeneration. Cell Rep. 2013, 4, 945–958.
|
[35] |
Liu, R.T.; Gao, J.Y.; Cao, S.J.; Sandhu, N.; Cui, J.Z.; Chou, C.L.; Fang, E.; Matsubara, J.A. Inflammatory mediators induced by amyloid-beta in the retina and RPE in vivo: implications for inflammasome activation in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2013, 54, 2225.
|
[36] |
Ruan, Y.; Jiang, S.B.; Musayeva, A.; Gericke, A. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants. 2020, 9, 761.
|
[37] |
Wang, Z.; Yu, J.G.; Wu, J.B.; Qi, F.; Wang, H.L.; Wang, Z.G.; Xu, Z.J. Scutellarin protects cardiomyocyte ischemia-reperfusion injury by reducing apoptosis and oxidative stress. Life Sci. 2016, 157, 200–207.
|
[38] |
Wang, Z.H.; Zhang, P.F.; Zhao, Y.P.; Yu, F.R.; Wang, S.Y.; Liu, K.W.; Cheng, X.; Shi, J.; He, Q.T.; Xia, Y.N.; Cheng, L. Scutellarin protects against mitochondrial reactive oxygen species-dependent NLRP3 inflammasome activation to attenuate intervertebral disc degeneration. Front. Bioeng. Biotechnol. 2022, 10, 883118.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[8] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[9] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[10] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[11] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[12] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[13] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[14] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[15] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||