[1] Colman, P.M.; Varghese, J.N.; Laver, W.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983, 303, 41-44.
[2] Russell, R.J.; Haire, L.F.; Stevens, D.J.; Collins, P.J.; Lin, Y.P.; Blackburn, G.M.; Hay, A.J.; Gamblin, S.J.; Skehel, J.J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006, 443, 45-49.
[3] Li, Q.; Qi, J.X.; Zhang, W.; Vavricka, C.J.; Shi, Y.; Wei, J.H.; Feng, E.G.; Shen, J.S.; Chen, J.L.; Liu, D.; He, J.H.; Yan, J.H.; Liu, H.; Jiang, H.L.; Teng, M.K.; Li, X.B.; Gao, G.F. The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat. Struct. Mol. Biol. 2010, 17, 1266-1268.
[4] Lee, N.; Hurt, A.C. Neuraminidase inhibitor resistance in influenza: a clinical perspective. Curr. Opin. Infect. Dis. 2018, 31, 520-526.
[5] Stoll, V.; Stewart, K.D.; Maring, C.J.; Muchmore, S.; Giranda, V.; Gu, Y.G.; Wang, G.; Chen, Y.W.; Sun, M.H.; Zhao, C.; Kennedy, A.L.; Madigan, D.L.; Xu, Y.B.; Saldivar, A.; Kati, W.; Laver, G.; Sowin, T.; Sham, H.L.; Greer, J.; Kempf, D. Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry. 2003, 42, 718-727.
[6] Grienke, U.; Schmidtke, M.; Kirchmair, J.; Pfarr, K.; Wutzler, P.; Dürrwald, R.; Wolber, G.; Liedl, K.R.; Stuppner, H.; Rollinger, J.M. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J. Med. Chem. 2010, 53, 778-786.
[7] Amaro, R.E.; Minh, D.D.; Cheng, L.S.; Lindstrom, W.M. Jr, Olson, A.J.; Lin, J.H.; Li, W.W.; McCammon, J.A. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 2007, 129, 7764-7765.
[8] Wang, M.Y.; Qi, J.X.; Liu, Y.; Vavricka, C.J.; Wu, Y.; Li, Q.; Gao, G.F. Influenza A virus N5 neuraminidase has an extended 150-cavity. J. Virol. 2011, 85, 8431-8435.
[9] Rudrawar, S.; Dyason, J.C.; Rameix-Welti, M.A.; Rose, F.J.; Kerry, P.S.; Russell, R.J.; van der Werf, S.; Thomson, R.J.; Naffakh, N.; von Itzstein, M. Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat. Commun. 2010, 1, 113.
[10] Feng, E.G.; Shin, W.J.; Zhu, X.L.; Li, J.; Ye, D.J.; Wang, J.; Zheng, M.Y.; Zuo, J.P.; No, K.T.; Liu, X.; Zhu, W.L.; Tang, W.; Seong, B.L.; Jiang, H.L.; Liu, H. Structure-based design and synthesis of C-1- and C-4-modified analogs of zanamivir as neuraminidase inhibitors. J. Med. Chem. 2013, 56, 671-684.
[11] Singh, N.; Anjum, N.; Chandra, R. Combating influenza: natural products as neuraminidase inhibitors. Phytochem. Rev. 2019, 18, 69-107.
[12] Kirchmair, J.; Rollinger, J.M.; Liedl, K.R.; Seidel, N.; Krumbholz, A.; Schmidtke, M. Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode. Future Med. Chem. 2011, 3, 437-450.
[13] Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett. 2011, 21, 294-298.
[14] Dao, T.T.; Nguyen, P.H.; Won, H.K.; Kim, E.H.; Park, J.; Won, B.Y.; Oh, W.K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem. 2012, 134, 21-28.
[15] Jin, Y.; Li, A.; Deng, L.; Luo, L.; Li, K. Molecular docking study based on 2009 H1N1 influenza neuraminidase. Comput. Appl. Chem. 2014, 31, 298-302. |