中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (4): 321-333.DOI: 10.5246/jcps.2025.04.024
周星宇1,2, 付丹1, 孙赛格1, 刘秋嫣1, 刘龙兴1, 石佳1, 葛子杰1, 马毓1, 何艺林3, 徐力3, 钱凯1,*()
收稿日期:
2024-11-09
修回日期:
2025-01-20
接受日期:
2025-02-16
出版日期:
2025-05-02
发布日期:
2025-05-02
通讯作者:
钱凯
Xingyu Zhou1,2, Dan Fu1, Saige Sun1, Qiuyan Liu1, Longxing Liu1, Jia Shi1, Zijie Ge1, Yu Ma1, Yilin He3, Li Xu3, Kai Qian1,*()
Received:
2024-11-09
Revised:
2025-01-20
Accepted:
2025-02-16
Online:
2025-05-02
Published:
2025-05-02
Contact:
Kai Qian
Supported by:
摘要:
本研究旨在异甘草酸镁(MgIG)治疗异丙肾上腺素(ISO)诱导的小鼠心肌重构的作用机制。通过激活PI3K/AKT1通路来评估MgIG对ISO诱导的小鼠心肌重构的结果。通过超声心动图检测小鼠的心脏功能, 发现MgIG可改善左心室功能。病理染色分析显示, MgIG可降低ISO引起的心肌损伤程度。ELISA检测的血清数据显示, MgIG可降低CK-MB、MDA和LDH的含量, 提高GSH-Px的活性。Western blot显示, Collagen I、BNP、Bax、cleaved caspase-3、p-PI3K和p-AKT1蛋白表达降低, 而Bcl-2、COX2和SOD1蛋白表达增加。然而, 当加入PI3K激活剂后, 发现PI3K通路的激活能够逆转MgIG的心脏保护效果。综合结果显示, MgIG可改善ISO诱导的心肌重构, 其机制可能与抑制PI3K/AKT1通路调节细胞凋亡和氧化应激有关。
Supporting: /attached/file/20250502/20250502173655_429.pdf
周星宇, 付丹, 孙赛格, 刘秋嫣, 刘龙兴, 石佳, 葛子杰, 马毓, 何艺林, 徐力, 钱凯. 异甘草酸镁通过PI3K/AKT1通路调控氧化应激和细胞凋亡改善ISO诱导的小鼠心肌重构[J]. 中国药学(英文版), 2025, 34(4): 321-333.
Xingyu Zhou, Dan Fu, Saige Sun, Qiuyan Liu, Longxing Liu, Jia Shi, Zijie Ge, Yu Ma, Yilin He, Li Xu, Kai Qian. Magnesium isoglycyrrhizinate ameliorates isoproterenol-induced myocardial remodeling in mice by regulating oxidative stress and apoptosis via the PI3K/AKT1 signaling pathway[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(4): 321-333.
Figure 1. MgIG treatment alleviates ISO-induced cardiac injury and dysfunction in mice. (A) The gross morphological changes of rat heart in each group. (B) Heart weight/body weight (HW/BW) and lung weight/body weight (LW/BW) ratios of rats in each group. (C) The echocardiographic parameters of left ventricular function were displayed by the changes in LVEF and LVFS. (D) H&E staining of mouse hearts at a magnification of 400 (scale =100 μm) in different groups. (E) Masson staining of mouse hearts at a magnification of ×100 in different groups. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05. n = 6 per group.
Figure 2. Effects of MgIG on cardiac phenotype protein. (A) Western blot analysis was used to determine the expression levels of BNP, ANP, β-MHC, Collagen I, and TGF-β. (B–F) Quantitative analysis of BNP, ANP, β-MHC, Collagen I, and TGF-β protein expression. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05. n = 3 per group.
Figure 3. MgIG improves myocardial remodeling by establishing an oxidative defense. (A) The levels of CK-MB, GSH-Px, LDH, and MDA in the serum were evaluated. (B) Western blot analysis was used to determine the expression levels of COX2, CAT, and SOD1. (C–E) Quantitative analysis of COX2, CAT, and SOD1 protein expression. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05. n = 3 per group.
Figure 4. Effects of MgIG on anti-apoptosis and PI3K/AKT1 pathway in cardiac remodeling. (A) Western blot analysis was used to determine the expression levels of Bax, Bcl-2, and cleaved caspase-3. (B–D) Quantitative analysis of Bax, Bcl-2, and cleaved caspase-3 protein expression. (E) Western blot analysis was used to determine the expression levels of p-PI3K and p-AKT1. (F, G) Quantitative analysis of p-PI3K and p-AKT1 protein expression. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05. n = 3 per group.
Figure 5. Activation of PI3K/AKT1 pathway reverses the protective effect of MgIG on cardiac function. (A) The gross morphological changes of rat heart in each group. (B) HW/BW and LW/BW ratios of rats in each group. (C) The echocardiographic parameters of left ventricular function were displayed by the changes in LVEF and LVFS. (D) H&E staining of mouse hearts at a magnification of 400 (scale = 100 μm) in different groups. (E) Masson staining of mouse hearts at a magnification of × 100 in different groups. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05; ^significant difference compared with the ISO + MgIG group, P < 0.05. n = 6 per group.
Figure 6. Activation of the PI3K/AKT1 pathway changed defensive mechanisms and related phenotype proteins in vivo. (A) The levels of CK-MB, GSH-Px LDH, and MDA in the serum were evaluated. (B) Western blot analysis was used to determine the expression levels of BNP, ANP, β-MHC, Collagen I, and TGF-β. (C–G) Quantitative analysis of BNP, ANP, β-MHC, Collagen I, and TGF-β protein expression. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05; ^significant difference compared with the ISO + MgIG group, P < 0.05. n = 3 per group.
Figure 7. The cardioprotective effects of MgIG relies on its antioxidant and anti-apoptosis properties mediated by the PI3K/AKT1 pathway. (A) Western blot analysis was used to determine the expression levels of p-PI3K, p-AKT1, Bax, Bcl-2, CAT, and SOD1. (B–G) Quantitative analysis of p-PI3K, p-AKT1, Bax, Bcl-2, CAT, and SOD1 protein expression. *Significant difference compared with the Con group, P < 0.05; #significant difference compared with the ISO group, P < 0.05; ^significant difference compared with the ISO + MgIG group, P < 0.05. n = 3 per group.
[1] |
Forno, E.; Han, Y.Y.; Mullen, J.; Celedón, J.C. Overweight, obesity, and lung function in children and adults-a meta-analysis. J. Allergy Clin. Immunol. Pract. 2018, 6, 570–581.e10.
|
[2] |
Li, R.; Song, L.; Liu, J.; Bai, Y.; Du, Y.; Lin, C.; Su, X.; Yu, Z. Cardioprotective effect of Linagliptin on diabetic Wistar rats. J. Chin. Pharm. Sci. 2021, 30, 334–346.
|
[3] |
Li, W.W.; Yang, J.C.; Lyu, Q.F.; Wu, G.F.; Lin, S.M.; Yang, Q.H.; Hu, J.M. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis. Mol. Cell Biochem. 2020, 469, 119–132.
|
[4] |
Zhang, Y.; Chen, W.Z.; Wang, Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed. Pharmacother. 2020, 125, 110022.
|
[5] |
Vuda, M.; Kamath, A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion. 2016, 31, 63–74.
|
[6] |
Park, S.; Yoon, J.; Bae, S.; Park, M.; Kang, C.S.; Ke, Q.G.; Lee, D.; Kang, P.M. Therapeutic use of H2O2-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy. Biomaterials. 2014, 35, 5944–5953.
|
[7] |
Cheng, W.J.; Shi, X.Q.; Zhang, J.C.; Li, L.Y.; Di, F.Q.; Li, M.; Wang, C.T.; An, Q.; Zhao, D. Role of PI3K-AKT pathway in ultraviolet ray and hydrogen peroxide-induced oxidative damage and its repair by grain ferments. Foods. 2023, 12, 806.
|
[8] |
Zheng, W.; Li, H.; Luo, L.; Hu, C.; You, P. PI3K/AKT/mTOR pathway inhibition and miR-210-mediated suppression of Atg7 promote autophagy in TOPC-induced apoptosis of H1975 cells. J. Chin. Pharm. Sci. 2023, 32, 881–892.
|
[9] |
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science. 2002, 296, 1655–1657.
|
[10] |
Lu, D.D.; Yang, Y.T.; Du, Y.H.; Zhang, L.; Yang, Y.; Tibenda, J.J.; Nan, Y.; Yuan, L. The potential of glycyrrhiza from "medicine food homology" in the fight against digestive system tumors. Molecules. 2023, 28, 7719.
|
[11] |
Isbrucker, R.A.; Burdock, G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharmacol. 2006, 46, 167–192.
|
[12] |
Wei, Z.H.; Sun, X.Q.; He, Q.Q.; Zhao, Y.; Wu, Y.C.; Han, X.; Wu, Z.L.; Chu, X.; Guan, S.J. Nephroprotective effect of magnesium isoglycyrrhizinate against arsenic trioxide-induced acute kidney damage in mice. Exp. Ther. Med. 2022, 23, 276.
|
[13] |
Liu, M.M.; Zheng, B.; Liu, P.P.; Zhang, J.P.; Chu, X.; Dong, C.H.; Shi, J.; Liang, Y.R.; Chu, L.; Liu, Y.S.; Han, X. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury. Mol. Med. Rep. 2021, 23, 438.
|
[14] |
Asghari, A.A.; Mahmoudabady, M.; Mousavi Emadi, Z.; Hosseini, S.J.; Salmani, H. Cardiac hypertrophy and fibrosis were attenuated by olive leaf extract treatment in a rat model of diabetes. J. Food Biochem. 2022, 46, e14494.
|
[15] |
Rai, V.; Sharma, P.; Agrawal, S.; Agrawal, D.K. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol. Cell Biochem. 2017, 424, 123–145.
|
[16] |
Oka, T.; Akazawa, H.; Naito, A.T.; Komuro, I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 2014, 114, 565–571.
|
[17] |
Benjamin, I.J.; Jalil, J.E.; Tan, L.B.; Cho, K.; Weber, K.T.; Clark, W.A. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ. Res. 1989, 65, 657–670.
|
[18] |
Yuan, M.; Zhao, B.; Jia, H.; Zhang, C.; Zuo, X. Sinomenine ameliorates cardiac hypertrophy by activating Nrf2/ARE signaling pathway. Bioengineered. 2021, 12, 12778–12788.
|
[19] |
Li, Y.; Zhou, W.W.; Sun, J.H.; Yang, H.X.; Xu, G.R.; Zhang, Y.; Song, Q.H.; Zhang, C.; Liu, W.Z.; Liu, X.C.; Li, A.Y. Modified citrus pectin prevents isoproterenol-induced cardiac hypertrophy associated with p38 signalling and TLR4/JAK/STAT3 pathway. Biomed. Pharmacother. 2021, 143, 112178.
|
[20] |
Zheng, J.; Wu, G.; Hu, G.X.; Peng, Y.Z.; Xiong, X.J. Protective effects against and potential mechanisms underlying the effect of magnesium isoglycyrrhizinate in hypoxia-reoxygenation injury in rat liver cells. Genet. Mol. Res. 2015, 14, 15453–15461.
|
[21] |
Rona, G.; Kahn, D.S.; Chappel, C.I. Studies on infarct-like myocardial necrosis produced by isoproterenol: a review. Rev. Can. Biol. 1963, 22, 241–255.
|
[22] |
Jiang, W.J.; Liu, J.Y.; Li, P.J.; Lu, Q.F.; Pei, X.; Sun, Y.L.; Wang, G.J.; Hao, K. Magnesium isoglycyrrhizinate shows hepatoprotective effects in a cyclophosphamide-induced model of hepatic injury. Oncotarget. 2017, 8, 33252–33264.
|
[23] |
Zhou, Q.L.; Meng, G.W.; Teng, F.; Sun, Q.; Zhang, Y.S. Effects of astragalus polysaccharide on apoptosis of myocardial microvascular endothelial cells in rats undergoing hypoxia/reoxygenation by mediation of the PI3K/Akt/eNOS signaling pathway. J. Cell Biochem. 2018, 119, 806–816.
|
[24] |
Guo, R.; Ren, J. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway. PLoS One. 2010, 5, e8757.
|
[25] |
Varghese, R.; George Priya Doss, C.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Efferth, T.; Ramamoorthy, S. Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine. 2022, 95, 153859.
|
[26] |
Shen, Y.J.; Wang, X.; Yuan, R.S.; Pan, X.; Yang, X.X.; Cai, J.L.; Li, Y.; Yin, A.W.; Xiao, Q.Q.; Ji, Q.Q.; Li, Y.J.; He, B.; Shen, L.H. Prostaglandin E1 attenuates AngII-induced cardiac hypertrophy via EP3 receptor activation and Netrin-1upregulation. J. Mol. Cell Cardiol. 2021, 159, 91–104.
|
[27] |
Cheng, Y.; Shen, A.L.; Wu, X.Y.; Shen, Z.Q.; Chen, X.P.; Li, J.P.; Liu, L.Y.; Lin, X.Y.; Wu, M.Z.; Chen, Y.Q.; Chu, J.F.; Peng, J. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed. Pharmacother. 2021, 133, 111022.
|
[28] |
Ghafouri-Fard, S.; Khanbabapour Sasi, A.; Hussen, B.M.; Shoorei, H.; Siddiq, A.; Taheri, M.; Ayatollahi, S.A. Interplay between PI3K/AKT pathway and heart disorders. Mol. Biol. Rep. 2022, 49, 9767–9781.
|
[29] |
Wang, J.P.; Luo, X.; Lu, J.X.; Wang, X.; Miao, Y.; Li, Q.C.; Wang, L. Rab22a promotes the proliferation, migration, and invasion of lung adenocarcinoma via up-regulating PI3K/Akt/mTOR signaling pathway. Exp. Cell Res. 2022, 416, 113179.
|
[30] |
Liang, C.X.; Jiang, Y.J.; Sun, L.Z. Vitexin suppresses the proliferation, angiogenesis and stemness of endometrial cancer through the PI3K/AKT pathway. Pharm. Biol. 2023, 61, 581–589.
|
[31] |
Jiang, Y.; Zhang, Q.L.; Bao, J.S.; Du, C.H.; Wang, J.; Tong, Q.; Liu, C. Schisandrin B suppresses glioma cell metastasis mediated by inhibition of mTOR/MMP-9 signal pathway. Biomed. Pharmacother. 2015, 74, 77–82.
|
[32] |
Yu, Y.J.; Zhou, S.Z.; Wang, Y.; Di, S.T.; Wang, Y.L.; Huang, X.; Chen, Y. Leonurine alleviates acetaminophen-induced acute liver injury by regulating the PI3K/AKT signaling pathway in mice. Int. Immunopharmacol. 2023, 120, 110375.
|
[33] |
Sun, H.; Zhou, F.; Wang, Y.; Zhang, Y.; Chang, A.M.; Chen, Q. Effects of beta-adrenoceptors overexpression on cell survival are mediated by Bax/Bcl-2 pathway in rat cardiac myocytes. Pharmacology. 2006, 78, 98–104.
|
[34] |
Yin, Y.; Han, W.; Cao, Y. Association between activities of SOD, MDA and Na+-K+-ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia. Hellenic J. Cardiol. 2019, 60, 366–371.
|
[1] | 王丹. 基于氧化应激相关基因的三七与黄精对近视作用的生物信息学分析[J]. 中国药学(英文版), 2024, 33(5): 438-447. |
[2] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[3] | 阳丽梅, 王丽满, 黄旭慧, 庄捷. 华法林通过调控Gas6/Axl/PI3K/Akt/NF-κB通路影响肺癌细胞株的增殖和凋亡[J]. 中国药学(英文版), 2023, 32(3): 190-199. |
[4] | 郑吴殷晓, 李海平, 罗来春, 胡春玲, 尤朋涛. TOPC通过抑制PI3K/AKT/mTOR通路, 抑制miR-210, Atg7诱导H1975细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 881-892. |
[5] | 陈小青, 彭波, 姜红梅, 张昌旭, 李海燕, 李子银. 丹酚酸B通过介导SIRT3/FOXO1信号通路减轻非酒精性脂肪肝的氧化应激反应[J]. 中国药学(英文版), 2022, 31(9): 698-710. |
[6] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[7] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[8] | 张明康, 陈宇玥, 周燕, 武新安. 槲皮素对四氯化碳致大鼠肝纤维化的缓解作用及其机制研究[J]. 中国药学(英文版), 2022, 31(11): 840-852. |
[9] | 韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318. |
[10] | 李荣, 宋利华, 刘杰, 白杨, 杜玉茗, 林春华, 苏秀媛, 于宗学. 利格列汀对糖尿病Wistar大鼠心脏保护作用的研究[J]. 中国药学(英文版), 2021, 30(4): 334-346. |
[11] | 黄晋, 杨玲馨, 杨宁, 袁博文, 张浩, 王梦月. 荨麻抑制前列腺增生药理作用研究[J]. 中国药学(英文版), 2020, 29(4): 236-243. |
[12] | 雷丽, 陈宇, 杨思敏, 孟祥豹, 余四旺. 一个新型氮杂萘醌类化合物通过诱导细胞凋亡来抑制肿瘤生长[J]. 中国药学(英文版), 2018, 27(9): 600-607. |
[13] | 孟雨晴, 王丽超, 李岩, 宋金洋, 杜智勇, 李春, 姜勇, 屠鹏飞, 郭晓宇. 三七-红花有效组分复方对心肌梗死大鼠的保护作用[J]. 中国药学(英文版), 2018, 27(2): 116-122. |
[14] | 王玉鹏, 孙懿, 蒲小平. 内源性抗氧化蛋白DJ-1: 弱精症治疗的潜在靶点[J]. 中国药学(英文版), 2017, 26(10): 697-708. |
[15] | 冀莎莎, 雷芸, 黄霄天, 高志芹. β-二氢沉香呋喃倍半萜抗Aβ25-35诱导的神经细胞凋亡和氧化损伤的保护作用[J]. 中国药学(英文版), 2016, 25(8): 582-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||