中国药学(英文版) ›› 2019, Vol. 28 ›› Issue (10): 673-686.DOI: 10.5246/jcps.2019.10.064
• 【综 述】 • 下一篇
辛文秀*, 方琦璐, 孙娇, 孔思思, 陈凌亚, 黄萍*
收稿日期:
2019-04-16
修回日期:
2019-06-18
出版日期:
2019-10-31
发布日期:
2019-07-21
通讯作者:
Tel.: +86-571-88122438; +86-571-88122118, E-mail: xinwx@zjcc.org.cn; huangping1841@zjcc.org.cn
作者简介:
辛文秀博士于2009年毕业于山东师范大学制药工程专业, 同年考入浙江大学药学院, 2014年获得药理学博士学位, 2014年至今任职于浙江省肿瘤医院药剂科, 先后任药师(2014)、主管药师(2016)。兼任浙江省药学会药物毒理学专业委员会青年委员。主要从事中药抗肿瘤药效学研究, 目前发表第一作者及通讯作者论文16篇, 其中SCI论文5篇, 主持国家自然科学基金及浙江省自然科学基金青年科学基金项目各1项。
基金资助:
Chinese Medicine Research Program of Zhejiang Province (Grant No. 2016ZA035), Projects of Medical and Health Technology Program in Zhejiang Province (Grant No. 2016KYA053), Zhejiang Provincial Association of Integrative Medicine Research Fund Project (Grant No. 2016LYK020).
Wenxiu Xin*, Qilu Fang, Jiao Sun, Sisi Kong, Lingya Chen, Ping Huang*
Received:
2019-04-16
Revised:
2019-06-18
Online:
2019-10-31
Published:
2019-07-21
Contact:
Tel.: +86-571-88122438; +86-571-88122118, E-mail: xinwx@zjcc.org.cn; huangping1841@zjcc.org.cn
About author:
Dr. Wenxiu Xin graduated from Shandong Normal University in 2009 with a major in pharmaceutical engineering. She was admitted to College of Pharmaceutical Sciences in Zhejiang University in 2009 and received his PhD degree in pharmacology in 2014. Since 2014, she has worked in the pharmacy department of Zhejiang Cancer Hospital, successively as pharmacist (2014) and chief pharmacist (2016). Over these years, she has specialized in the research of anti-tumor pharmacodynamics research of traditional Chinese medicine. She has published 16 associated papers in domestic and international journals as the first author or correspondent author, including 5 SCI papers, and presided over one National Natural Science Foundation of China as well as one Zhejiang Natural Science Foundation.
Supported by:
Chinese Medicine Research Program of Zhejiang Province (Grant No. 2016ZA035), Projects of Medical and Health Technology Program in Zhejiang Province (Grant No. 2016KYA053), Zhejiang Provincial Association of Integrative Medicine Research Fund Project (Grant No. 2016LYK020).
摘要:
中图分类号:
Supporting:
辛文秀, 方琦璐, 孙娇, 孔思思, 陈凌亚, 黄萍. 异甘草素的抗癌作用: 生物学效应与分子机制[J]. 中国药学(英文版), 2019, 28(10): 673-686.
Wenxiu Xin, Qilu Fang, Jiao Sun, Sisi Kong, Lingya Chen, Ping Huang. Anticancer activity of Isoliquiritigenin: biological effects and molecular mechanisms[J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 673-686.
[1] Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394-424.
[2] Das, T.; Sa, G.; Saha, B.; Das, K. Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol. Cell. Biochem. 2010, 336, 85-95.
[3] Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018, 144, 582-594.
[4] Pistollato, F.; Calderón Iglesias, R.; Ruiz, R.; Aparicio, S.; Crespo, J.; Dzul Lopez, L.; Giampieri, F.; Battino, M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 2017, 411, 191-200.
[5] Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients. 2017, 9, E728.
[6] Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016, 8, 156.
[7] Peng, F.; Du, Q.H.; Peng, C.; Wang, N.; Tang, H.L.; Xie, X.M.; Shen, J.G.; Chen, J.P. A review: the pharmacology of isoliquiritigenin. Phytother. Res. 2015, 29, 969-977.
[8] Ii, T.; Satomi, Y.; Katoh, D.; Shimada, J.; Baba, M.; Okuyama, T.; Nishino, H.; Kitamura, N. Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett. 2004, 207, 27-35.
[9] Wang, K.L.; Hsia, S.M.; Chan, C.J.; Chang, F.Y.; Huang, C.Y.; Bau, D.T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets. 2013, 17, 337-349.
[10] Zhang, B.Y.; Lai, Y.; Li, Y.F.; Shu, N.; Wang, Z.; Wang, Y.P.; Li, Y.S.; Chen, Z.J. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol. 2018, 821, 57-67.
[11] Tian, T.; Sun, J.P.; Wang, J.X.; Liu, Y.C.; Liu, H.T. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol. Lett. 2018, 16, 6133-6139.
[12] Zhao, H.; Yuan, X.; Li, D.F.; Chen, H.M.; Jiang, J.T.; Wang, Z.P.; Sun, X.L.; Zheng, Q.S. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide. Molecules. 2013, 18, 8786-8798.
[13] Wang, Z.Y.; Wang, N.; Liu, P.X.; Chen, Q.J.; Situ, H.L.; Xie, T.; Zhang, J.X.; Peng, C.; Lin, Y.; Chen, J.P. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget. 2014, 5, 7013-7026.
[14] Sun, C.; Zhang, H.; Ma, X.F.; Zhou, X.; Gan, L.; Liu, Y.Y.; Wang, Z.H. Isoliquiritigenin enhances radiosensitivity of HepG2 cells via disturbance of redox status. Cell Biochem. Biophys. 2013, 65, 433-444.
[15] Wu, C.H.; Chen, H.Y.; Wang, C.W.; Shieh, T.M.; Huang, T.C.; Lin, L.C.; Wang, K.L.; Hsia, S.M. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget. 2016, 7, 73432-73447.
[16] Safdari, Y.; Khalili, M.; Ebrahimzadeh, M.A.; Yazdani, Y.; Farajnia, S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol. Res. 2015, 93, 1-10.
[17] Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur. J. Pharmacol. 2018, 841, 90-97.
[18] Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.Y.; Chi, Y.I.; Kundu, J.K.; Lee, N.H.; Lee, C.C.; Cho, Y.Y.; Bode, A.M.; Lee, K.W.; Dong, Z.G. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem. 2014, 289, 35839-35848.
[19] Zhang, X.R.; Wang, S.Y.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018, 18, 3429-3436.
[20] Si, L.L.; Yang, X.H.; Yan, X.Y.; Wang, Y.M.; Zheng, Q.S. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett. 2017, 14, 241-249.
[21] Xiang, S.J.; Chen, H.J.; Luo, X.J.; An, B.C.; Wu, W.F.; Cao, S.W.; Ruan, S.F.; Wang, Z.X.; Weng, L.D.; Zhu, H.X.; Liu, Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res. 2018, 37, 184.
[22] Sun, C.; Wang, Z.H.; Liu, X.X.; Yang, L.N.; Wang, Y.L.; Liu, Y.; Mao, A.H.; Liu, Y.Y.; Zhou, X.; Di, C.X.; Gan, L.; Zhang, H. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 1368-1381.
[23] Reddy, B.S. Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ. Mol. Mutagen. 2004, 44, 26-35.
[24] Baba, M.; Asano, R.; Takigami, I.; Takahashi, T.; Ohmura, M.; Okada, Y.; Sugimoto, H.; Arika, T.; Nishino, H.; Okuyama, T. Studies on cancer chemoprevention by traditional folk medicines XXV. Inhibitory effect of isoliquiritigenin on azoxymethane-induced murine colon aberrant crypt focus formation and carcinogenesis. Biol. Pharm. Bull. 2002, 25, 247-250.
[25] Wu, M.N.; Wu, Y.Q.; Deng, B.G.; Li, J.S.; Cao, H.Y.; Qu, Y.; Qian, X.L.; Zhong, G.S. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 2016, 7, 85318-85331.
[26] Zhao, H.X.; Zhang, X.H.; Chen, X.W.; Li, Y.; Ke, Z.Q.; Tang, T.; Chai, H.Y.; Guo, A.M.; Chen, H.L.; Yang, J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol. Appl. Pharmacol. 2014, 279, 311-321.
[27] Zorko, B.A.; Pérez, L.B.; De Blanco, E.J. Effects of ILTG on DAPK1 promoter methylation in colon and leukemia cancer cell lines. Anticancer. Res. 2010, 30, 3945-3950.
[28] Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 2007, 55, 4691-4697.
[29] Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci. 2004, 95, 448-453.
[30] Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.Y.; Park, J.H. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food. 2009, 12, 8-14.
[31] Kanazawa, M.; Satomi, Y.; Mizutani, Y.; Ukimura, O.; Kawauchi, A.; Sakai, T.; Baba, M.; Okuyama, T.; Nishino, H.; Miki, T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur. Urol. 2003, 43, 580-586.
[32] Park, I.; Park, K.K.; Park, J.H.; Chung, W.Y. Isoliquiritigenin induces G2 and M phase arrest by inducing DNA damage and by inhibiting the metaphase/anaphase transition. Cancer Lett. 2009, 277, 174-181.
[33] Shukla, S.K.; Gebregiworgis, T.; Purohit, V.; Chaika, N.V.; Gunda, V.; Radhakrishnan, P.; Mehla, K.; Pipinos, I.I.; Powers, R.; Yu, F.; Singh, P.K. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab. 2014, 2, 18.
[34] Liu, L.; Gong, L.S.; Zhang, Y.D.; Li, N.F. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp. Ther. Med. 2013, 5, 338-342.
[35] Chen, X.Y.; Li, D.F.; Han, J.C.; Wang, B.; Dong, Z.P.; Yu, L.N.; Pan, Z.H.; Qu, C.J.; Chen, Y.; Sun, S.G.; Zheng, Q.S. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3β signaling. Oncotarget. 2017, 8, 34565-34575.
[36] Chen, X.Y.; Yang, M.; Hao, W.J.; Han, J.C.; Ma, J.; Wang, C.X.; Sun, S.G.; Zheng, Q.S. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene. 2016, 592, 86-98.
[37] Chen, X.Y.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.L.; Zhao, H.; Liu, L.L.; Wang, Y.M.; Wang, Z.H.; Zheng, Q.S. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell Longev. 2012, 2012, 534934.
[38] Li, D.F.; Wang, Z.H.; Chen, H.M.; Wang, J.Y.; Zheng, Q.S.; Shang, J.; Li, J. Isoliquiritigenin induces monocytic differentiation of HL-60 cells. Free Radic. Biol. Med. 2009, 46, 731-736.
[39] Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell. 2004, 117, 699-711.
[40] Chen, X.Z.; Wu, Y.P.; Jiang, Y.F.; Zhou, Y.; Wang, Y.X.; Yao, Y.Q.; Yi, C.; Gou, L.T.; Yang, J.L. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. 2012, 90, 1311-1319.
[41] Jung, J.I.; Chung, E.; Seon, M.R.; Shin, H.K.; Kim, E.J.; Lim, S.S.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells. Biofactors. 2006, 28, 159-168.
[42] Wang, Z.Y.; Wang, N.; Han, S.W.; Wang, D.M.; Mo, S.L.; Yu, L.Z.; Huang, H.; Tsui, K.; Shen, J.G.; Chen, J.P. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One. 2013, 8, e68566.
[43] Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem. 2000, 64, 1813-1820.
[44] Hsu, Y.L.; Chia, C.C.; Chen, P.J.; Huang, S.E.; Huang, S.C.; Kuo, P.L. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol. Nutr. Food Res. 2009, 53, 826-835.
[45] Zhao, S.P.; Chang, H.G.; Ma, P.J.; Gao, G.J.; Jin, C.L.; Zhao, X.L.; Zhou, W.K.; Jin, B.Z. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol. 2015, 8, 12577-12582.
[46] Hirchaud, F.; Hermetet, F.; Ablise, M.; Fauconnet, S.; Vuitton, D.A.; Prétet, J.L.; Mougin, C. Isoliquiritigenin induces caspase-dependent apoptosis via downregulation of HPV16 E6 expression in cervical cancer Ca Ski cells. Planta Med. 2013, 79, 1628-1635.
[47] Ma, J.; Fu, N.Y.; Pang, D.B.; Wu, W.Y.; Xu, A.L. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med. 2001, 67, 754-757.
[48] Biagioli, M.; Pifferi, S.; Ragghianti, M.; Bucci, S.; Rizzuto, R.; Pinton, P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium. 2008, 43, 184-195.
[49] Kubota, K.; Lee, D.H.; Tsuchiya, M.; Young, C.S.; Everett, E.T.; Martinez-Mier, E.A.; Snead, M.L.; Nguyen, L.; Urano, F.; Bartlett, J.D. Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. J. Biol. Chem. 2005, 280, 23194-23202.
[50] Yuan, X.; Zhang, B.; Gan, L.; Wang, Z.H.; Yu, B.C.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci. 2013, 26, 268-276.
[51] Yuan, X.; Yu, B.; Wang, Y.; Jiang, J.; Liu, L.; Zhao, H.; Qi, W.; Zheng, Q. Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Pat. Anticancer Drug Discov. 2013, 8, 191-199.
[52] Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med. 2008, 13, 281-287.
[53] Jung, J.I.; Lim, S.S.; Choi, H.J.; Cho, H.J.; Shin, H.K.; Kim, E.J.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 689-696.
[54] Hsu, Y.L.; Kuo, P.L.; Chiang, L.C.; Lin, C.C. Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 414-418.
[55] Vousden, K.H.; Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer. 2002, 2, 594-604.
[56] Wang, X.Y.; Simpson, E.R.; Brown, K.A. P53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 2015, 75, 5001-5007.
[57] Gartel, A.L.; Tyner, A.L. Transcriptional Regulation of the p21(WAF1/CIP1)Gene. Exp. Cell Res. 1999, 246, 280-289.
[58] Gartel, A.L. P21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors. 2009, 35, 161-164.
[59] Zhou, Y.L.; Ho, W.S. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncol. Rep. 2014, 31, 298-304.
[60] Zhou, G.S.; Song, L.J.; Yang, B. Isoliquiritigenin inhibits proliferation and induces apoptosis of U87 human glioma cells in vitro. Mol. Med. Rep. 2013, 7, 531-536.
[61] Kim, D.H.; Park, J.E.; Chae, I.G.; Park, G.; Lee, S.; Chun, K.S. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol. Rep. 2017, 38, 575-583.
[62] Li, Y.; Zhao, H.X.; Wang, Y.Z.; Zheng, H.; Yu, W.; Chai, H.Y.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; Peng, R.X.; Yang, J. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol. 2013, 272, 37-48.
[63] Takahashi, T.; Baba, M.; Nishino, H.; Okuyama, T. Cyclooxygenase-2 plays a suppressive role for induction of apoptosis in isoliquiritigenin-treated mouse colon cancer cells. Cancer Lett. 2006, 231, 319-325.
[64] Peng, F.; Tang, H.L.; Liu, P.; Shen, J.G.; Guan, X.Y.; Xie, X.F.; Gao, J.H.; Xiong, L.; Jia, L.; Chen, J.P.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep. 2017, 7, 9022.
[65] Wang, Y.M.; Ma, J.; Yan, X.Y.; Chen, X.Y.; Si, L.L.; Liu, Y.; Han, J.C.; Hao, W.J.; Zheng, Q.S. Isoliquiritigenin inhibits proliferation and induces apoptosis via alleviating hypoxia and reducing glycolysis in mouse melanoma B16F10 cells. Recent Pat. Anticancer Drug Discov. 2016, 11, 215-227.
[66] White, E.; Mehnert, J.M.; Chan, C.S. Autophagy, metabolism, and cancer. Clin. Cancer Res. 2015, 21, 5037-5046.
[67] Chen, G.; Hu, X.; Zhang, W.; Xu, N.; Wang, F.Q.; Jia, J.; Zhang, W.F.; Sun, Z.J.; Zhao, Y.F. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012, 17, 90-101.
[68] Chen, H.Y.; Huang, T.C.; Shieh, T.M.; Wu, C.H.; Lin, L.C.; Hsia, S.M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int. J. Mol. Sci. 2017, 18, E2025.
[69] Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer. 2016, 16, 201-218.
[70] Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 2006, 12, 895-904.
[71] Rashid, M.; Karim, S.; Ali, B.; Khan, S.; Ahmad, M.; Husain, A.; Mishra, R. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J. Chin. Pharm. Sci. 2017, 26, 621-634.
[72] Li, N.; Yang, L.; Deng, X.N.; Sun, Y.N. Effects of isoliquiritigenin on ovarian cancer cells. Onco. Targets. Ther. 2018, 11, 1633-1642.
[73] Chen, J.; Liu, C.; Yang, Q.Q.; Ma, R.B.; Ke, Y.; Dong, F.; Wu, X.E. Isoliquiritigenin suppresses osteosarcoma U2OS cell proliferation and invasion by regulating the PI3K/akt signalling pathway. Chemotherapy. 2018, 63, 155-161.
[74] Zheng, H.; Li, Y.; Wang, Y.Z.; Zhao, H.X.; Zhang, J.; Chai, H.Y.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol. 2014, 280, 10-20.
[75] Kwon, G.T.; Cho, H.J.; Chung, W.Y.; Park, K.K.; Moon, A.; Park, J.H. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J. Nutr. Biochem. 2009, 20, 663-676.
[76] Sun, Z.J.; Chen, G.; Zhang, W.; Hu, X.; Huang, C.F.; Wang, Y.F.; Jia, J.; Zhao, Y.F. Mammalian target of rapamycin pathway promotes tumor-induced angiogenesis in adenoid cystic carcinoma: its suppression by isoliquiritigenin through dual activation of c-Jun NH2-terminal kinase and inhibition of extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther. 2010, 334, 500-512.
[77] Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharmacol. 2010, 382, 221-234.
[78] Patricia Moreno-Londoño, A.; Bello-Alvarez, C.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol. 2017, 109, 143-154.
[79] Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.; Lim, S.S.; Chung, W.Y. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci. 2008, 106, 444-451. |
[1] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[2] | 杜浩鑫, 保琦, 李黄倩玉, 张逸晨, 海沙尔江·吾守尔, 史录文, 管晓东. 中国中老年癌症幸存者健康状况分析[J]. 中国药学(英文版), 2023, 32(9): 744-754. |
[3] | 李慧丽, 李珏, 何丹丹, 陶玲, 江渝斌, 沈祥春, 姜飞. 基于ZAc热点区域的BRD4 Bromodomain抑制剂设计与活性研究[J]. 中国药学(英文版), 2023, 32(12): 971-988. |
[4] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[5] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[6] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[7] | 杨加琼, 刘英, 宗大庆, 赵静峰. 酢浆草乙醇提取物的凝血止血作用和急性毒性初步探究[J]. 中国药学(英文版), 2022, 31(7): 530-535. |
[8] | 玉米提·塔西甫拉提, 周越, 韩晟, 杜可欣, 杨瑶瑶, 胡琳, 郑波, 管晓东, 海沙尔江·吾守尔, 史录文. 中国二级和三级医院具有抗菌效果的中成药使用及费用变化趋势: 2011–2015年药品采购数据分析[J]. 中国药学(英文版), 2022, 31(4): 298-307. |
[9] | 商燕, 蔺晓源, 张田田, 谢丽华, 胡国恒. 基于网络药理学和分子对接探讨益气活血方抗脑缺血机制研究[J]. 中国药学(英文版), 2022, 31(2): 117-133. |
[10] | 陈绪龙, 廖正根, 李成, 黄国勇, 宋云燕, 董伟, Abid Naeem, 梁新丽. 白术内酯II在人肝微粒体中与CYP450酶之间的相互作用研究[J]. 中国药学(英文版), 2021, 30(8): 645-656. |
[11] | 刘红菊, 李静, 谢慧仪, 王玲玲, 张志珍, 闫冲. Diaporisoindole B通过抑制MyD88/NF-κB/MAPKs通路对LPS诱导的RAW 264.7巨噬细胞发挥抗炎作用[J]. 中国药学(英文版), 2021, 30(8): 675-685. |
[12] | 李成, 朱玉华, 孙晓旻, 许静, 熊丹, 王娟, 高新庐, 陈绪龙. 基于网络药理学和分子对接技术探讨雷公藤致急性肾损伤的多重作用机制[J]. 中国药学(英文版), 2021, 30(7): 556-569. |
[13] | 李莹, 文周, 刘永玲, 赵治兵, 王磊, 程泽能. 高效液相色谱法测定大鼠血浆中阿昔洛韦浓度及其与吉非替尼药物相互作用的研究[J]. 中国药学(英文版), 2021, 30(6): 495-504. |
[14] | 宋慧慧, 向卓, 薛淑一, 苗青, 赵丽艳, 李明春. 白头翁皂苷及其单体抗肿瘤作用及机制的研究进展[J]. 中国药学(英文版), 2021, 30(5): 381-392. |
[15] | 北京大学药学院 天然药物及仿生药物国家重点实验室. 张强、何冰团队在纳米药物转运机制方面获重要进展[J]. 中国药学(英文版), 2021, 30(10): 857-858. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||