中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (10): 773-795.DOI: 10.5246/jcps.2023.10.064
• 【综述】 • 下一篇
李楷1,2,#, 唐冰洁1,2,#, 柴新龙1,2, 平洋1,2, 王丽红1,2, 苏瑾1,2,*()
收稿日期:
2023-03-07
修回日期:
2023-03-23
接受日期:
2023-05-21
出版日期:
2023-11-04
发布日期:
2023-11-04
通讯作者:
苏瑾
作者简介:
基金资助:
Kai Li1,2,#, Bingjie Tang1,2,#, Xinlong Chai1,2, Yang Ping1,2, Lihong Wang1,2, Jin Su1,2,*()
Received:
2023-03-07
Revised:
2023-03-23
Accepted:
2023-05-21
Online:
2023-11-04
Published:
2023-11-04
Contact:
Jin Su
About author:
摘要:
靶向给药系统由于能够在特定部位实现药物的靶向释放而受到研究人员的广泛青睐, 其中主动靶向给药系统被认为是最有前途的靶向给药系统。然而, 用于构建多功能药物载体靶向部分的常用纳米材料存在许多缺点, 如生物相容性低、易被单核吞噬细胞系统消除、不易修饰等, 限制了其应用。唾液酸是一种天然配体, 通常作为糖蛋白或糖脂上聚糖的末端糖存在于细胞表面。作为一种内源性物质, 它具有生物安全性高、分子结构均匀清晰、易于化学修饰等特点。唾液酸功能化的纳米颗粒可携带靶向特异性表达其受体(唾液酸结合免疫球蛋白样凝集素或选择素受体)细胞的药物用以治疗疾病。在这篇综述中, 我们介绍了目前发表的关于以唾液酸修饰的纳米粒子为基础并结合“唾液酸结合免疫球蛋白样凝集素或选择素受体”的靶向给药系统在肿瘤或炎症中治疗作用的文献, 并讨论了天然唾液酸配体的化学修饰方法, 用以提高对受体的结合亲和力和选择性。
Supporting:
李楷, 唐冰洁, 柴新龙, 平洋, 王丽红, 苏瑾. 唾液酸功能化靶向给药系统: 与唾液酸结合免疫球蛋白样凝集素或选择素受体结合的肿瘤和炎症治疗进展[J]. 中国药学(英文版), 2023, 32(10): 773-795.
Kai Li, Bingjie Tang, Xinlong Chai, Yang Ping, Lihong Wang, Jin Su. Sialic acid-functionalized targeted drug delivery systems: advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 773-795.
Figure 2. Human and murine SA-binding immunoglobulin-like lectins (Siglecs, Sig). ITIM: Immunoreceptor tyrosine-based inhibitory motifs; ITAM: Immunoreceptor tyrosine-based activation motifs.
Figure 3. PSGL-1, CD43 on circulating leukocytes interacts with P-selectin and E-selectin on the vascular endothelium of inflamed joint synovium and controls leukocyte recruitment to joints during rheumatoid arthritis. L-selectin on leukocytes also plays a role in this process by binding endothelial PNAd to the surface of chronically inflamed blood vessels. P-selectin expressed by adherent platelets promotes further adhesion of leukocytes to the synovial vascular bed.
Figure 4. DOX-SPCL not only significantly enhances the binding of liposomes to TAMs through SA ligand/receptor interaction but also effectively promotes the lysosomal escape of internalized liposomes, thereby enhancing the antitumor effect in vivo.
Figure 5. LPS-activated HUVECs can internalize more SA-PEG-DXM/DXM micelles. SA-PEG-DXM/DXM micelles significantly attenuate the expressions of Bax and Caspase-3 and enhance the expression of Bcl-2.
Figure 6. DOX-SAL is internalized into NEs, releasing the loaded DOX, which promotes NE apoptosis and leads to blocked NE migration, ultimately resulting in NE-related inflammation.
Figure 7. Overexpression of E-selectin on peritumoral inflammatory VECs increases the accumulation of SPDD micelles in tumor tissues, whereas overexpression on tumor cells increases micelle internalization.
[1] |
Su, Y.; Zhang, B.L.; Sun, R.W.; Liu, W.F.; Zhu, Q.B.; Zhang, X.; Wang, R.R.; Chen, C.P. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021, 28, 1397–1418.
|
[2] |
Iwao, O. Tumor-targeting drug delivery of chemotherapeutic agents. Pure Appl. Chem. 2011, 83, 1685–1698.
|
[3] |
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.
|
[4] |
Choi, J.S.; Cao, J.F.; Naeem, M.; Noh, J.; Hasan, N.; Choi, H.K.; Yoo, J.W. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids Surf. B. 2014, 122, 545–551.
|
[5] |
Attia, M.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198.
|
[6] |
Xu, X.L.; Lu, K.J.; Zhu, M.L.; Du, Y.L.; Zhu, Y.F.; Zhang, N.N.; Wang, X.J.; Kang, X.Q.; Xu, D.M.; Ying, X.Y.; Yu, R.S.; Lu, C.Y.; Ji, J.S.; You, J.A.; Du, Y.Z. Sialic acid-functionalized pH-triggered micelles for enhanced tumor tissue accumulation and active cellular internalization of orthotopic hepatocarcinoma. ACS Appl. Mater. Interfaces. 2018, 10, 31903–31914.
|
[7] |
Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int. J. Nanomed. 2018, 13, 3921–3935.
|
[8] |
Pandit, S.; Dutta, D.; Nie, S.M. Active transcytosis and new opportunities for cancer nanomedicine. Nat. Mater. 2020, 19, 478–480.
|
[9] |
Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19, 507–514.
|
[10] |
Bork, K.; Reutter, W.; Gerardy-Schahn, R.; Horstkorte, R. The intracellular concentration of sialic acid regulates the polysialylation of the neural cell adhesion molecule. FEBS Lett. 2005, 579, 5079–5083.
|
[11] |
Sperandio, M. Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J. 2006, 273, 4377–4389.
|
[12] |
Zhang, C.; Chen, J.Y.; Liu, Y.H.; Xu, D.Y. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids Health Dis. 2019, 18, 1–11.
|
[13] |
Bartneck, M.; Schlößer, C.T.; Barz, M.; Zentel, R.; Trautwein, C.; Lammers, T.; Tacke, F. Immunomodulatory therapy of inflammatory liver disease using selectin-binding glycopolymers. ACS Nano. 2017, 11, 9689–9700.
|
[14] |
Jubeli, E.; Moine, L.; Nicolas, V.; Barratt, G. Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int. J. Pharm. 2012, 426, 291–301.
|
[15] |
Zheng, H.L.; Li, J.Q.; Wang, M.J.; Luo, X.; Qiu, Q.J.; Hu, L.; Li, C.; Song, Y.Z.; Deng, Y.H. Exhausting tumor associated macrophages with sialic acid-polyethyleneimine-cholesterol modified liposomal doxorubicin for enhancing sarcoma chemotherapy. Int. J. Pharm. 2019, 558, 187–200.
|
[16] |
Hu, J.B.; Kang, X.Q.; Liang, J.; Wang, X.J.; Xu, X.L.; Yang, P.; Ying, X.Y.; Jiang, S.P.; Du, Y.Z. E-selectin-targeted sialic acid-PEG-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney injury. Theranostics. 2017, 7, 2204–2219.
|
[17] |
Kim, Y.H.; Min, K.H.; Wang, Z.T.; Kim, J.; Jacobson, O.; Huang, P.; Zhu, G.Z.; Liu, Y.J.; Yung, B.; Niu, G.; Chen, X.Y. Development of sialic acid-coated nanoparticles for targeting cancer and efficient evasion of the immune system. Theranostics. 2017, 7, 962–973.
|
[18] |
Kuo, Y.C.; Wang, L.J.; Rajesh, R. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater. Sci. Eng. C. 2019, 102, 362–372.
|
[19] |
Xu, X.L.; Li, W.S.; Wang, X.J.; Du, Y.L.; Kang, X.Q.; Hu, J.B.; Li, S.J.; Ying, X.Y.; You, J.; Du, Y.Z. Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale. 2018, 10, 2923–2935.
|
[20] |
Zhou, X.M.; Yang, G.L.; Guan, F. Biological functions and analytical strategies of sialic acids in tumor. Cells. 2020, 9, 273.
|
[21] |
Schultz, M.J.; Swindall, A.F.; Bellis, S.L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 2012, 31, 501–518.
|
[22] |
Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007, 446, 1023–1029.
|
[23] |
Lübbers, J.; Rodríguez, E.; van Kooyk, Y. Modulation of immune tolerance via siglec-sialic acid interactions. Front. Immunol. 2018, 9, 2807.
|
[24] |
Schauer, R. Sialic acids and their role as biological masks. Trends Biochem. Sci. 1985, 10, 357–360.
|
[25] |
Schauer, R.; Kamerling, J.P. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem. 2018, 75, 1–213.
|
[26] |
Deng, L.Q.; Chen, X.; Varki, A. Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers. 2013, 99, 650–665.
|
[27] |
Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 2010, 5, 163–176.
|
[28] |
Hunter, C.D.; Porter, E.M.; Cairo, C.W. Human neuraminidases have reduced activity towards modified sialic acids on glycoproteins. Carbohydr. Res. 2020, 497, 108139.
|
[29] |
Altman, M.O.; Gagneux, P. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans—an evolutionary perspective. Front. Immunol. 2019, 10, 789.
|
[30] |
Büll, C.; Boltje, T.J.; van Dinther, E.A.W.; Peters, T.; de Graaf, A.M.A.; Leusen, J.H.W.; Kreutz, M.; Figdor, C.G.; den Brok, M.H.; Adema, G.J. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano. 2015, 9, 733–745.
|
[31] |
Szabo, R.; Skropeta, D. Advancement of sialyltransferase inhibitors: therapeutic challenges and opportunities. Med. Res. Rev. 2017, 37, 219–270.
|
[32] |
Büll, C.; den Brok, M.H.; Adema, G.J. Sweet escape: Sialic acids in tumor immune evasion. Biochim. Biophys. Acta BBA Rev. Cancer. 2014, 1846, 238–246.
|
[33] |
Shah, M.H.; Telang, S.D.; Shah, P.M.; Patel, P.S. Tissue and serum α2-3- and α2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj. J. 2008, 25, 279–290.
|
[34] |
Yin, J.; Hashimoto, A.; Izawa, M.; Miyazaki, K.; Chen, G.Y.; Takematsu, H.; Kozutsumi, Y.; Suzuki, A.; Furuhata, K.; Cheng, F.L.; Lin, C.H.; Sato, C.; Kitajima, K.; Kannagi, R. Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non–human sialic acid on human cancer cells. Cancer Res. 2006, 66, 2937–2945.
|
[35] |
Dědová, T.; Braicu, E.I.; Sehouli, J.; Blanchard, V. Sialic acid linkage analysis refines the diagnosis of ovarian cancer. Front. Oncol. 2019, 9, 261.
|
[36] |
Pal, S.; Chatterjee, M.; Bhattacharya, D.K.; Bandhyopadhyay, S.; Mandal, C. Identification and purification of cytolytic antibodies directed against O-acetylated sialic acid in childhood acute lymphoblastic leukemia. Glycobiology. 2000, 10, 539–549.
|
[37] |
Bel’skaya, L.V.; Kosenok, V.K.; Massard, Z. Sialic acids of saliva in primary and differential diagnosis of lung cancer. Sovremennye Tehnologii V Med. 2018, 10, 110–115.
|
[38] |
Jose, M.; Dadhich, M.; Prabhu, V.; Pai, V.R.; D’Souza, J.; Harish, S. Serum and salivary sialic acid as a biomarker in oral potentially malignant disorders and oral cancer. Indian J. Cancer. 2014, 51, 214–218.
|
[39] |
Ogoshi, K.; Kondoh, Y.; Tajima, T.; Mitomi, T. Glycosidically bound sialic acid levels as a predictive marker of postoperative adjuvant therapy in gastric cancer. Cancer Immunol. Immunother. 1992, 35, 175–180.
|
[40] |
Joshi, M.; Patil, R. Estimation and comparative study of serum total sialic acid levels as tumor markers in oral cancer and precancer. J. Cancer Res. Ther. 2010, 6, 263.
|
[41] |
Gonzalez-Gil, A.; Schnaar, R.L. Siglec ligands. Cells. 2021, 10, 1260.
|
[42] |
Angata, T. Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. Front. Immunol. 2018, 9, 2885.
|
[43] |
Walter, R.B.; Raden, B.W.; Zeng, R.; Häusermann, P.; Bernstein, I.D.; Cooper, J.A. ITIM-dependent endocytosis of CD33-related siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J. Leukoc. Biol. 2008, 83, 200–211.
|
[44] |
Yu, Z.B.; Lai, C.M.; Maoui, M.; Banville, D.; Shen, S.H. Identification and characterization of S2V, a novel putative siglec that contains two V set ig-like domains and recruits protein-tyrosine phosphatases SHPs. J. Biol. Chem. 2001, 276, 23816–23824.
|
[45] |
O’Reilly, M.K.; Paulson, J.C. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol. Sci. 2009, 30, 240–248.
|
[46] |
van de Wall, S.; Santegoets, K.C.M.; van Houtum, E.J.H.; Büll, C.; Adema, G.J. Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol. 2020, 41, 274–285.
|
[47] |
Büll, C.; Heise, T.; Adema, G.J.; Boltje, T.J. Sialic acid mimetics to target the sialic acid-siglec axis. Trends Biochem. Sci. 2016, 41, 519–531.
|
[48] |
Estadella, I.; Pedrós-Gámez, O.; Colomer-Molera, M.; Bosch, M.; Sorkin, A.; Felipe, A. Endocytosis: a turnover mechanism controlling ion channel function. Cells. 2020, 9, 1833.
|
[49] |
Yu, H.F.; Gonzalez-Gil, A.; Wei, Y.D.; Fernandes, S.M.; Porell, R.N.; Vajn, K.; Paulson, J.C.; Nycholat, C.M.; Schnaar, R.L. Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology. 2017, 27, 657–668.
|
[50] |
Daly, J.; Carlsten, M.; O’Dwyer, M. Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol. 2019, 10, 1047.
|
[51] |
Boons, G.J. Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas. Expert Rev. Vaccines. 2010, 9, 1251–1256.
|
[52] |
Zöllner, O.; Lenter, M.C.; Blanks, J.E.; Borges, E.; Steegmaier, M.; Zerwes, H.G.; Vestweber, D. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin. J. Cell Biol. 1997, 136, 707–716.
|
[53] |
Burger, P.C.; Wagner, D.D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood. 2003, 101, 2661–2666.
|
[54] |
Brenner, B.; Gulbins, E.; Koppenhoefer, U.; Lang, F.; Linderkamp, O. L-selectin-mediated lymphocyte rolling of jurkat T lymphocytes depends on functional expression of the tyrosine kinase p56lck. Cell Physiol. Biochem. 1997, 7, 107–118.
|
[55] |
Matsumoto, S.; Imaeda, Y.; Umemoto, S.; Kobayashi, K.; Suzuki, H.; Okamoto, T. Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-a epitope expression on tumour cells. Br. J. Cancer. 2002, 86, 161–167.
|
[56] |
Ye, C.L.; Kiriyama, K.; Mistuoka, C.; Kannagi, R.; Ito, K.; Watanabe, T.; Kondo, K.; Akiyama, S.; Takagi, H. Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. Int. J. Cancer. 1995, 61, 455–460.
|
[57] |
Adamson, P.; Tighe, M.; Pearson, J.D. Protein tyrosine kinase inhibitors act downstream of IL-1α and LPS stimulated MAP-kinase phosphorylation to inhibit expression of E-selectin on human umbilical vein endothelial cells. Cell Adhesion Commun. 1996, 3, 511–525.
|
[58] |
Huizing, M.; Yardeni, T.; Fuentes, F.; Malicdan, M.C.V.; Leoyklang, P.; Volkov, A.; Dekel, B.; Brede, E.; Blake, J.; Powell, A.; Chatrathi, H.; Anikster, Y.; Carrillo, N.; Gahl, W.A.; Kopp, J.B. Rationale and design for a phase 1 study of N-acetylmannosamine for primary glomerular diseases. Kidney Int. Rep. 2019, 4, 1454–1462.
|
[59] |
Bondioli, L.; Costantino, L.; Ballestrazzi, A.; Lucchesi, D.; Boraschi, D.; Pellati, F.; Benvenuti, S.; Tosi, G.; Vandelli, M.A. PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials. 2010, 31, 3395–3403.
|
[60] |
Yang, C.C.; Yao, C.A.; Yang, J.C.; Chien, C.T. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol. Sci. 2014, 141, 155–165.
|
[61] |
Yang, S.; Gao, H.L. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol. Res. 2017, 126, 97–108.
|
[62] |
Bingle, L.; Brown, N.J.; Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 2002, 196, 254–265.
|
[63] |
Guruvayoorappan, C. Tumor versus tumor-associated macrophages: how hot is the link? Integr. Cancer Ther. 2008, 7, 90–95.
|
[64] |
Takayama, H.; Nishimura, K.; Tsujimura, A.; Nakai, Y.; Nakayama, M.; Aozasa, K.; Okuyama, A.; Nonomura, N. Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus calmette-guerin instillation. J. Urol. 2009, 181, 1894–1900.
|
[65] |
Takamiya, R.; Ohtsubo, K.; Takamatsu, S.; Taniguchi, N.; Angata, T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology. 2013, 23, 178–187.
|
[66] |
Li, C.; Qiu, Q.J.; Gao, X.; Yan, X.Y.; Fan, C.Z.; Luo, X.; Liu, X.R.; Wang, S.; Lai, X.X.; Song, Y.Z.; Deng, Y.H. Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy. J. Control. Release. 2021, 337, 393–406.
|
[67] |
Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 6995.
|
[68] |
Pan, Y.Y.; Yu, Y.D.; Wang, X.J.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020, 11, 583084.
|
[69] |
Clézardin, P. Anti-tumour activity of zoledronic acid. Cancer Treat. Rev. 2005, 31, 1–8.
|
[70] |
Green, J.R. Preclinical profile of zoledronic acid in prostate cancer models. Eur. Urol. Suppl. 2004, 3, 16–24.
|
[71] |
Tang, X.Y.; Sui, D.Z.; Liu, M.Q.; Zhang, H.X.; Liu, M.; Wang, S.; Zhao, D.; Sun, W.L.; Liu, M.Y.; Luo, X.; Lai, X.X.; Liu, X.R.; Deng, Y.H.; Song, Y.Z. Targeted delivery of zoledronic acid through the sialic acid - Siglec axis for killing and reversal of M2 phenotypic tumor-associated macrophages - A promising cancer immunotherapy. Int. J. Pharm. 2020, 590, 119929.
|
[72] |
Hatina, J.; Kripnerova, M.; Houfkova, K.; Pesta, M.; Kuncova, J.; Sana, J.R.; Slaby, O.; Rodríguez, R. Sarcoma stem cell heterogeneity. Stem Cells Heterogeneity-Novel Concepts. 2019, 95–118.
|
[73] |
Blanco, E.; Shen, H.F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
|
[74] |
Zhang, P.; Sun, F.; Liu, S.J.; Jiang, S.Y. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release. 2016, 244, 184–193.
|
[75] |
Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.G.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 2017, 174, 1591–1619.
|
[76] |
Hennigs, J.K.; Matuszcak, C.; Trepel, M.; Körbelin, J. Vascular endothelial cells: heterogeneity and targeting approaches. Cells. 2021, 10, 2712.
|
[77] |
Lee, M.Y.; Gamez-Mendez, A.; Zhang, J.S.; Zhuang, Z.; Vinyard, D.J.; Kraehling, J.R.; Velázquez, H.; Brudvig, G.; Kyriakides, T.; Simons, M.; Sessa, W. Endothelial cell autonomous role of Akt1: regulation of vascular tone and ischemia-induced arteriogenesis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 870–879.
|
[78] |
Lalla, R.V.; Boisoneau, D.S.; Spiro, J.D.; Kreutzer, D.L. Expression of vascular endothelial growth factor receptors on tumor cells in head and neck squamous cell carcinoma. Arch. Otolaryngol. 2003, 129, 882.
|
[79] |
Sepp, N.T.; Gille, J.; Li, L.J.; Caughman, S.W.; Lawley, T.J.; Swerlick, R.A. A factor in human plasma permits persistent expression of E-selectin by human endothelial cells. J. Investig. Dermatol. 1994, 102, 445–450.
|
[80] |
Ladilov, Y.; Schäfer, C.; Held, A.; Schäfer, M.; Noll, T.; Piper, H.M. Mechanism of Ca2+ overload in endothelial cells exposed to simulated ischemia. Cardiovasc. Res. 2000, 47, 394–403.
|
[81] |
Wang, Y.H.; Zhang, J.; Wier, W.G.; Chen, L.; Blaustein, M.P. NO-induced vasodilation correlates directly with BP in smooth muscle-Na/Ca exchanger-1-engineered mice: elevated BP does not attenuate endothelial function. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H221–H237.
|
[82] |
Sommer, N.; Dietrich, A.; Schermuly, R.T.; Ghofrani, H.A.; Gudermann, T.; Schulz, R.; Seeger, W.; Grimminger, F.; Weissmann, N. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur. Respir. J. 2008, 32, 1639–1651.
|
[83] |
Russell, J.; Epstein, C.J.; Grisham, M.B.; Alexander, J.S.; Yeh, K.Y.; Granger, D.N. Regulation of E-selectin expression in postischemic intestinal microvasculature. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, G878–G885.
|
[84] |
Shen, W.C.; Liang, C.J.; Huang, T.M.; Liu, C.W.; Wang, S.H.; Young, G.H.; Tsai, J.S.; Tseng, Y.C.; Peng, Y.S.; Wu, V.C.; Chen, Y.L. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway. Arch. Toxicol. 2016, 90, 2779–2792.
|
[85] |
Tong, X.E.; Zhao, H.; Lu, X.M. Renal damage induced by myocardial ischemia reperfusion in mouse: role of oxidative stress. Indian J. Animal Res. 2019, 54, 1486–1489.
|
[86] |
Watanabe, S.; Tajima, Y.; Yamaguchi, T.; Fukui, T. Potassium bromate-induced hyperuricemia stimulates acute kidney damage and oxidative stress. J. Health Sci. 2004, 50, 647–653.
|
[87] |
Berdnikovs, S.; Abdala-Valencia, H.; Cook-Mills, J.M. Endothelial cell PTP1B regulates leukocyte recruitment during allergic inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 304, L240–L249.
|
[88] |
Ley, K.; Reutershan, J. Leucocyte-endothelial interactions in health and disease. The Vascular Endothelium II. 2006, 97–133.
|
[89] |
McCafferty, D.M.; Smith, C.W.; Granger, D.N.; Kubes, P. Intestinal inflammation in adhesion molecule-deficient mice: an assessment of P-selectin alone and in combination with ICAM-1 or E-selectin. J. Leukoc. Biol. 1999, 66, 67–74.
|
[90] |
Austrup, F.; Vestweber, D.; Borges, E.; Löhning, M.; Bräuer, R.; Herz, U.; Renz, H.; Hallmann, R.; Scheffold, A.; Radbruch, A.; Hamann, A. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature. 1997, 385, 81–83.
|
[91] |
Vaupel, P.; Mayer, A. Tumor hypoxia: causative mechanisms, microregional heterogeneities, and the role of tissue-based hypoxia markers. Oxygen Transport to Tissue XXXVIII. 2016, 77–86.
|
[92] |
Schito, L. Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. Hypoxia and Cancer Metastasis. 2019, 71–85.
|
[93] |
Nagl, L.; Horvath, L.; Pircher, A.; Wolf, D. Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment–new findings and future perspectives. Front. Cell Dev. Biol. 2020, 8, 766.
|
[94] |
Zhu, Q.; Li, J.C.; Wu, Q.; Cheng, Y.X.; Zheng, H.Z.; Zhan, T.; Wang, H.W.; Yang, Y.; Wang, H.Y.; Liu, Y.; Guo, S.F. Linc-OIP5 in the breast cancer cells regulates angiogenesis of human umbilical vein endothelial cells through YAP1/Notch/NRP1 signaling circuit at a tumor microenvironment. Biol Res. 2020, 53, 5.
|
[95] |
Pezzolo, A.; Marimpietri, D.; Raffaghello, L.; Cocco, C.; Pistorio, A.; Gambini, C.; Cilli, M.; Horenstein, A.; Malavasi, F.; Pistoia, V. Failure of anti tumor-derived endothelial cell immunotherapy depends on augmentation of tumor hypoxia. Oncotarget. 2014, 5, 10368–10381.
|
[96] |
Xu, X.L.; Chen, M.X.; Lou, X.F.; Du, Y.Y.; Shu, G.F.; Qi, J.; Zhu, M.L.; Ying, X.Y.; Yu, L.; Ji, J.S.; Du, Y.Z. Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to enhance photodynamic therapy by inhibiting VE-cadherin internalization. Chem. Eng. J. 2021, 414, 128743.
|
[97] |
Sionov, R.V.; Fridlender, Z.G.; Granot, Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015, 8, 125–158.
|
[98] |
Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531.
|
[99] |
Scutera, S.; Musso, T.; Cavalla, P.; Piersigilli, G.; Sparti, R.; Comini, S.; Vercellino, M.; Cuffini, A.M.; Banche, G.; Allizond, V. Inhibition of human neutrophil functions in vitro by multiple sclerosis disease-modifying therapies. J. Clin. Med. 2020, 9, 3542.
|
[100] |
Chu, D.F.; Dong, X.Y.; Shi, X.T.; Zhang, C.Y.; Wang, Z.J. Neutrophil-based drug delivery systems. Adv. Mater. 2018, 30, 1706245.
|
[101] |
Dehghani, T.; Panitch, A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020, 10, 200161.
|
[102] |
Bi, Y.H.; Duan, W.X.; Chen, J.; You, T.; Li, S.Y.; Jiang, W.; Li, M.; Wang, G.; Pan, X.Y.; Wu, J.; Liu, D.; Li, J.; Wang, Y.C. Neutrophil decoys with anti-inflammatory and anti-oxidative properties reduce secondary spinal cord injury and improve neurological functional recovery. Adv. Funct. Mater. 2021, 31, 2102912.
|
[103] |
Grieshaber-Bouyer, R.; Nigrovic, P.A. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front. Immunol. 2019, 10, 346.
|
[104] |
Wright, H.L.; Makki, F.A.; Moots, R.J.; Edwards, S.W. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J. Leukoc. Biol. 2017, 101, 599–611.
|
[105] |
Denny, M.F.; Yalavarthi, S.; Zhao, W.P.; Thacker, S.G.; Anderson, M.; Sandy, A.R.; McCune, W.J.; Kaplan, M.J. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 2010, 184, 3284–3297.
|
[106] |
Sagiv, J.Y.; Michaeli, J.; Assi, S.; Mishalian, I.; Kisos, H.; Levy, L.; Damti, P.; Lumbroso, D.; Polyansky, L.; Sionov, R.V.; Ariel, A.; Hovav, A.H.; Henke, E.; Fridlender, Z.G.; Granot, Z. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015, 10, 562–573.
|
[107] |
Wang, S.; Lai, X.X.; Li, C.; Chen, M.; Hu, M.; Liu, X.R.; Song, Y.Z.; Deng, Y.H. Sialic acid-conjugate modified doxorubicin nanoplatform for treating neutrophil-related inflammation. J. Control. Release. 2021, 337, 612–627.
|
[108] |
Subhan, M.A.; Torchilin, V.P. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sci. 2021, 285, 119952.
|
[109] |
Eruslanov, E.B. Phenotype and function of tumor-associated neutrophils and their subsets in early-stage human lung cancer. Cancer Immunol. Immunother. 2017, 66, 997–1006.
|
[110] |
Qiu, Q.J.; Li, C.; Yan, X.Y.; Zhang, H.X.; Luo, X.; Gao, X.; Liu, X.R.; Song, Y.Z.; Deng, Y.H. Photodynamic/photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for potent tumor immunotherapy: more than one plus one? Biomaterials. 2021, 269, 120652.
|
[111] |
Witz, I.P. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008, 27, 19–30.
|
[112] |
Barthel, S.R.; Gavino, J.D.; Descheny, L.; Dimitroff, C.J. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets. 2007, 11, 1473–1491.
|
[113] |
Lafouresse, F.; Bellard, E.; Laurent, C.; Moussion, C.; Fournié, J.J.; Ysebaert, L.; Girard, J.P. L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood. 2015, 126, 1336–1345.
|
[114] |
Zheng, J.S.; Zheng, S.Y.; Zhang, Y.B.; Yu, B.; Zheng, W.J.; Yang, F.; Chen, T.F. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Colloids Surf. B. 2011, 83, 183–187.
|
[115] |
Lenza, M.P.; Atxabal, U.; Oyenarte, I.; Jiménez-Barbero, J.; Ereño-Orbea, J. Current status on therapeutic molecules targeting siglec receptors. Cells. 2020, 9, 2691.
|
[116] |
Crocker, P.R.; Paulson, J.C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007, 7, 255–266.
|
[117] |
Kelm, S.; Schauer, R.; Manuguerra, J.C.; Gross, H.J.; Crocker, P.R. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj. J. 1994, 11, 576–585.
|
[118] |
Kelm, S.; Brossmer, R.; Isecke, R.; Gross, H.J.; Strenge, K.; Schauer, R. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 1998, 255, 663–672.
|
[119] |
Mesch, S.; Lemme, K.; Wittwer, M.; Koliwer-Brandl, H.; Schwardt, O.; Kelm, S.; Ernst, B. From a library of MAG antagonists to nanomolar CD22 ligands. ChemMedChem. 2012, 7, 134–143.
|
[120] |
Kelm, S.; Madge, P.; Islam, T.; Bennett, R.; Koliwer-Brandl, H.; Waespy, M.; Von Itzstein, M.; Haselhorst, T. C-4 modified sialosides enhance binding to siglec-2 (CD22): towards potent siglec inhibitors for immunoglycotherapy. Angew. Chem. Int. Ed. 2013, 52, 3616–3620.
|
[121] |
Nycholat, C.M.; Rademacher, C.; Kawasaki, N.; Paulson, J.C. In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J. Am. Chem. Soc. 2012, 134, 15696–15699.
|
[122] |
Murugesan, G.; Weigle, B.; Crocker, P.R. Siglec and anti-siglec therapies. Curr. Opin. Chem. Biol. 2021, 62, 34–42.
|
[123] |
Prescher, H.; Schweizer, A.; Kuhfeldt, E.; Nitschke, L.; Brossmer, R. Discovery of multifold modified sialosides as Human CD22/siglec-2 ligands with nanomolar activity on B-cells. ACS Chem. Biol. 2014, 9, 1444–1450.
|
[124] |
Rillahan, C.D.; MacAuley, M.S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B.M.; Rangarajan, J.; Fokin, V.V.; Paulson, J.C. Disubstituted sialic acid ligands targeting siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chem. Sci. 2014, 5, 2398–2406.
|
[125] |
Walter, R.B.; Boyle, K.M.; Appelbaum, F.R.; Bernstein, I.D.; Pagel, J.M. Simultaneously targeting CD45 significantly increases cytotoxicity of the anti-CD33 immunoconjugate, gemtuzumab ozogamicin, against acute myeloid leukemia (AML) cells and improves survival of mice bearing human AML xenografts. Blood. 2008, 111, 4813–4816.
|
[126] |
Steck, A.J.; Stalder, A.K.; Renaud, S. Anti-myelin-associated glycoprotein neuropathy. Curr. Opin. Neurol. 2006, 19, 458–463.
|
[127] |
Rillahan, C.D.; Schwartz, E.; McBride, R.; Fokin, V.V.; Paulson, J.C. Click and pick: identification of sialoside analogues for siglec-based cell targeting. Angew. Chem. Int. Ed. 2012, 51, 11014–11018.
|
[128] |
Connolly, N.P.; Jones, M.; Watt, S.M. Human Siglec-5: tissue distribution, novel isoforms and domain specificities for sialic acid-dependent ligand interactions. Br. J. Haematol. 2002, 119, 221–238.
|
[129] |
Gunnarsson, P.; Levander, L.; Påhlsson, P.; Grenegård, M. The acute-phase protein α1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (Siglecs). FASEB J. 2007, 21, 4059–4069.
|
[130] |
Prescher, H.; Gütgemann, S.; Frank, M.; Kuhfeldt, E.; Watzl, C.; Brossmer, R. Synthesis and biological evaluation of 9-N-oxamyl sialosides as Siglec-7 ligands. Bioorg. Med. Chem. 2015, 23, 5915–5921.
|
[131] |
Angata, T.; Varki, A. Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology. 2000, 10, 431–438.
|
[132] |
Rodriguez, E.; Boelaars, K.; Brown, K.; Eveline Li, R.J.; Kruijssen, L.; Bruijns, S.C.M.; van Ee, T.; Schetters, S.T.T.; Crommentuijn, M.H.W.; van der Horst, J.C.; van Grieken, N.C.T.; van Vliet, S.J.; Kazemier, G.; Giovannetti, E.; Garcia-Vallejo, J.J.; van Kooyk, Y. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat. Commun. 2021, 12, 1270.
|
[133] |
Legrand, F.; Landolina, N.; Zaffran, I.; Emeh, R.O.; Chen, E.; Klion, A.D.; Levi-Schaffer, F. Siglec-7 on peripheral blood eosinophils: surface expression and function. Allergy. 2019, 74, 1257–1265.
|
[134] |
Yan, W.J.; Li, W.; Xiong, D.C.; Ye, X.S. Design, synthesis and evaluation of carbamate-containing sialyltransferase inhibitors. J. Chin. Pharm. Sci. 2020, 29, 29–44.
|
[135] |
Jennifer, B.; Sachi, H.; Gubbels, J.; Sarah, P.; Arvinder, K.; Sabine, A.; Hans-Joachim, G.; Claudine, R.; Joseph, C.; James, P.; Manish, P. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol. Cancer. 2010, 9, 118–132.
|
[136] |
Beatson, R.; Tajadura-Ortega, V.; Achkova, D.; Picco, G.; Tsourouktsoglou, T.D.; Klausing, S.; Hillier, M.; Maher, J.; Noll, T.; Crocker, P.R.; Taylor-Papadimitriou, J.; Burchell, J.M. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin siglec-9. Nat. Immunol. 2016, 17, 1273–1281.
|
[137] |
Kivi, E.; Elima, K.; Aalto, K.; Nymalm, Y.; Auvinen, K.; Koivunen, E.; Otto, D.M.; Crocker, P.R.; Salminen, T.A.; Salmi, M.; Jalkanen, S. Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood. 2009, 114, 5385–5392.
|
[138] |
Bandala-Sanchez, E.; Bediaga, N.G.; Naselli, G.; Neale, A.M.; Harrison, L.C. Siglec-10 expression is up-regulated in activated human CD4+ T cells. Hum. Immunol. 2020, 81, 101–104.
|
[139] |
Blixt, O.; Han, S.F.; Liao, L.A.; Zeng, Y.; Hoffmann, J.; Futakawa, S.; Paulson, J.C. Sialoside analogue arrays for rapid identification of high affinity siglec ligands. J. Am. Chem. Soc. 2008, 130, 6680–6681.
|
[1] | 王番, 李锐莉, 王文军, 周晓燕, 刘美佑, 赵瑾怡, 文爱东, 王婧雯, 贾艳艳. α-乳香酸通过抑制TLR4介导的炎症通路改善急性肾损伤[J]. 中国药学(英文版), 2023, 32(7): 539-550. |
[2] | 王昭景, 许青霞, 许京, 徐嵬, 杨秀伟. 补骨脂宁通过激活Nrf2/HO-1并抑制NF-κB信号通路在过氧化氢诱导的HT22细胞和脂多糖诱导的BV2细胞上发挥抗氧化和抗神经炎症作用[J]. 中国药学(英文版), 2023, 32(2): 85-100. |
[3] | 陈培杰, 张云天. PTP1B抑制肝纤维化逆转期TRAIL诱导的肝星状细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 867-880. |
[4] | 卢磊, 邱成英, 陈谦. 莲花清瘟颗粒联合头孢噻肟钠对小儿肺炎患儿疗效及血清炎症因子的影响[J]. 中国药学(英文版), 2023, 32(11): 947-953. |
[5] | 赵雅慧, 赵莉, 赵娟, 卢继业, 田薇, 胡金朋, 苏彬, 付立华, 郭然. 基于生物信息学分析探讨地塞米松通过上调TNFAIP3减轻烟雾吸入性急性肺损伤炎症反应的机制[J]. 中国药学(英文版), 2022, 31(9): 689-697. |
[6] | 黄嘉欢, 岳玲, 张铭儒, 杨全, 程轩轩. 辣蓼对大肠杆菌性腹泻小鼠炎症因子和细胞色素P450酶表达的影响[J]. 中国药学(英文版), 2022, 31(8): 622-633. |
[7] | 张婵娟, 胡立坤, 张贺, 漆心怡, 黄健, 刘东. 2-Hydroxycircumdatin C通过抑制TLR4/NF-κB/MAPK和JAK2/STAT3通路对脂多糖诱导BV2小胶质细胞发挥抗炎作用[J]. 中国药学(英文版), 2022, 31(4): 239-249. |
[8] | 王颖峥, 杨策, 朱翠萍, 赵茜茜, 卢雪花, 苏晓宇, 王英豪. 羌活通过调节P2X3抑制PKC诱导的炎症反应治疗"上肢痹痛"[J]. 中国药学(英文版), 2022, 31(3): 163-175. |
[9] | 刘良裕, 杨宇珂, 杜肖, 吴桐, 王建农. 白英中三个未被报道的甾体糖苷生物碱及其抗肿瘤活性[J]. 中国药学(英文版), 2022, 31(3): 192-201. |
[10] | 王子翼, 刘晓岩, 朱元军, 刘晔, 张平平, 王银叶. W026B对大鼠全脑缺血再灌注损伤的保护作用[J]. 中国药学(英文版), 2022, 31(2): 108-116. |
[11] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[12] | 康静婷, 纪超. 加兰他敏调节IL-1β/IL-1RA比率改善炎症微环境的机制探讨[J]. 中国药学(英文版), 2022, 31(10): 773-781. |
[13] | 蒋雯, 韦亦霖, 温清, 史革鑫, 赵恒利. 美他多辛通过抑制巨噬细胞和中性粒细胞向肝脏浸润缓解急性酒精性肝损伤[J]. 中国药学(英文版), 2022, 31(1): 47-54. |
[14] | 许士琪, 朱礼岩, 郝超, 刘文倩, 陈成龙, 陈泳怡, 刘爱芹. 一种新型含氨基酸基团替加氟前药的合成及其抗肿瘤活性评价[J]. 中国药学(英文版), 2021, 30(9): 743-753. |
[15] | 李睿, 孔燕茹. 利格列汀对初诊2型糖尿病患者炎症因子和动脉硬化的影响[J]. 中国药学(英文版), 2021, 30(8): 692-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||