中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (5): 392-405.DOI: 10.5246/jcps.2023.05.033
收稿日期:
2022-12-09
修回日期:
2023-01-15
接受日期:
2023-03-07
出版日期:
2023-06-02
发布日期:
2023-06-02
通讯作者:
王金华
作者简介:
基金资助:
Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang*()
Received:
2022-12-09
Revised:
2023-01-15
Accepted:
2023-03-07
Online:
2023-06-02
Published:
2023-06-02
Contact:
Jinhua Wang
摘要:
半枫荷是一种传统的中药材, 其野生资源现已遭到严重破坏, 濒临灭绝。为了更好地保护和利用半枫荷资源, 人工栽培应运而生。本研究采用顶空-气相色谱-离子迁移谱法(HS-GC-IMS)结合主成分分析(PCA)对人工栽培和野生半枫荷中的挥发性有机化合物(VOCs)的变化进行分析。通过比较人工与野生品种半枫荷之间的差异来确定人工栽培半枫荷的药用价值。结果表明, 半枫荷人工栽培和野生品种的VOCs组成相同, 用于调节其药效的皮和茎中的挥发性有机化合物没有显着差异。该研究为人工栽培半枫荷的应用和野生品种的替代提供了科学理论。
Supporting:
葛永辉, 汪玲, 许粟, 姜天丽, 王金华. 顶空-气相色谱-离子迁移谱法直接鉴定人工栽培和野生中药材(半枫荷)中的挥发性化合物[J]. 中国药学(英文版), 2023, 32(5): 392-405.
Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang. Direct identification of volatile compounds in the artificially cultivated and wild Chinese medicinal materials (Semiliquidambar cathayesis) by headspace-gas chromatography-ion mobility spectrometry[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 392-405.
Figure 2. Reporter analysis of the artificially cultivated and wild SC samples. (A) The topographic plot of GC-IMS spectra; (B) The spectrum of the first sample of each group in the topographic plot was selected as the reference, and the spectrum was obtained by subtracting the reference from the spectra of other samples. RIP represents the reactant ion peak.
Figure 4. Gallery plot of the selected signal peak areas obtained with different parts of the artificially cultivated and wild SCs. 1-1, 1-2, 1-3, and 1-4 represent the leaf, branch, bark, and stem of the artificially cultivated SC, respectively; 2-1, 2-2, 2-3, and 2-4 represent the leaf, branch, bark, and stem of the wild SC, respectively.
Figure 5. PCA results of different parts of the artificially cultivated and wild SCs. A represents the PCA result of the artificially cultivated SC; B represents the PCA result of the wild SC; C represents the sum of the PCA results of the artificially cultivated and wild SCs; a–d represent the the leaf, branch, bark, and stem of the artificially cultivated SC, respectively; e–h represent the leaf, branch, bark, and stem of the wild SC, respectively.
[1] |
Sun, W.B.; Ma, Y.P.; Blackmore, S. How a new conservation action concept has accelerated plant conservation in China. Trends Plant Sci. 2019, 24, 4–6.
|
[2] |
Yang, L.; Liu, R.H.; He, J.W. Rapid analysis of the chemical compositions in semiliquidambar cathayensis roots by ultra high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry. Molecules. 2019, 24, E4098.
|
[3] |
Zhang, J.Y.; Kaliaperumal, K.; Liu, Z.Y.; Zhang, J. Chemical constituents from Semiliquidambar chingii and their chemotaxonomic significance. Biochem. Syst. Ecol. 2022, 100, 104360.
|
[4] |
Ye, X.Z.; Liu, D.; Luo, J.J.; Fan, H.H.; Zhang, G.F.; Liu, B.; Chen, S.P. Transcriptome analysis for rare and endangered plants of Semiliquidambar cathayensis. Bulletin Botanical Res. 2019, 39, 276–286.
|
[5] |
Zhang, M.Z.; Jiang, Y.T.; Ye, X.Z.; Chen, S.P.; Fan, H.H.; Liu, B. The complete chloroplast genome of semiliquidambar cathayensis (Hamamelidaceae). Mitochondrial DNA B. 2020, 5, 695–696.
|
[6] |
Wu, W.; Zhou, R.; Huang, Y.; Boufford, D.E.; Shi, S. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia. J. Plant Res. 2010, 123, 231–239.
|
[7] |
Ye, X.Z.; Wen, G.W.; Zhang, M.Z.; Liu, Y.P.; Fan, H.H.; Zhang, G.F.; Chen, S.P.; Liu, B. Genetic diversity and genetic structure of a rare and endangered species Semiliquidambar cathayensis Hung T. Chang. Plant Sci. J. 2021, 39, 415–423.
|
[8] |
Huang, L.H.; Chen, Q.T.; Xiao, Y.S.; Miao, S.Y.; Song, L.Y. Optimization and primers screening of ISSR-PCR reaction system for Semiliquidambar cathayensis Chang. Molecular Plant Breeding. 2021, 19, 6782–6789.
|
[9] |
Li, Q.L.; Li, R.Q.; Cao, G.; Wu, X.; Yang, G.M.; Cai, B.C.; Cheng, B.; Mao, W.M. Direct differentiation of herbal medicine for volatile components by a multicapillary column with ion mobility spectrometry method. J. Sep. Sci. 2015, 38, 3205–3208.
|
[10] |
Yuan, Z.Y.; Li, J.; Zhou, X.J.; Wu, M.H.; Li, L.; Pei, G.; Chen, N.H.; Liu, K.L.; Xie, M.Z.; Huang, H.Y. HS-GC-IMS-Based metabonomics study of Baihe Jizihuang Tang in a rat model of chronic unpredictable mild stress. J. Chromatogr. B. 2020, 1148, 122143.
|
[11] |
Zhang, J.; Zhang, W.G.; Zhou, L.; Zhang, R.Y. Study on the influences of ultrasound on the flavor profile of unsmoked bacon and its underlying metabolic mechanism by using HS-GC-IMS. Ultrason. Sonochem. 2021, 80, 105807.
|
[12] |
Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696.
|
[13] |
Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158.
|
[14] |
Karpas, Z. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res. Int. 2013, 54, 1146–1151.
|
[15] |
Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73.
|
[16] |
Yao, W.S.; Cai, Y.X.; Liu, D.Y.; Chen, Y.; Li, JR; Zhang, M.C.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989.
|
[17] |
Li, X.R.; Dong, Y.F.; Jiang, P.F.; Qi, L.B.; Lin, S.Y. Identification of changes in volatile compounds in sea cucumber Apostichopus japonicus during seasonings soaking using HS-GC-IMS. LWT. 2022, 154, 112695.
|
[18] |
Gu, S.; Zhang, J.; Wang, J.; Wang, X.Y.; Du, D.D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. Trac-Trend. Anal. Chem. 2021, 144, 116435.
|
[19] |
Yuan, Z.Y.; Qu, H.Y.; Xie, M.Z.; Zeng, G.; Huang, H.Y.; Ren, F.; Chen, N.H. Direct authentication of three Chinese materia medica species of the Lilii Bulbus family in terms of volatile components by headspace-gas chromatography-ion mobility spectrometry. Anal. Methods. 2019, 11, 530–536.
|
[20] |
Lv, W.S.; Lin, T.; Ren, Z.Y.; Jiang, Y.Q.; Zhang, J.; Bi, F.J.; Gu, L.H.; Hou, H.C.; He, J.N. Rapid discrimination of Citrus reticulata ‘Chachi’ by headspace-gas chromatography-ion mobility spectrometry fingerprints combined with principal component analysis. Food Res. Int. 2020, 131, 108985.
|
[21] |
He, J.; Ye, L.H.; Li, J.H.; Huang, W.K.; Huo, Y.J.; Gao, J.X.; Liu, L.; Zhang, W.T. Identification of Ophiopogonis Radix from different producing areas by headspace-gas chromatography-ion mobility spectrometry analysis. J. Food Biochem. 2021, 00, e13850.
|
[22] |
Guo, S.; Zhao, X.Y.; Ma, Y.; Wang, Y.B.; Wang, D. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chem. 2022, 369, 130939.
|
[23] |
Yin, J.X.; Wu, M.F.; Lin, R.M.; Li, X.; Ding, H.; Han, L.F.; Yang, W.Z.; Song, X.B.; Li, W.L.; Qu, H.B.; Yu, H.S.; Li, Z. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527.
|
[24] |
Cao, G.; Shou, Q.Y.; Li, Q.L.; Jiang, J.P.; Chen, X.C. Static headspace-multicapillary column with gas chromatography coupled to ion mobility spectrometry as a simple approach for the discrimination of crude and processed traditional Chinese medicines. J. Sep. Sci. 2014, 37, 3090–3093.
|
[25] |
Yin, J.; Lin, R.; Wu, M.; Ding, H.; Han, L.; Yang, W.; Song, X.; Li, W.; Qu, H.; Yu, H.; Li, Z. Strategy for the multi-component characterization and quality evaluation of volatile organic components in Kaixin San by correlating the analysis by headspace gas chromatography/ion mobility spectrometry and headspace gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2021, 35, e9174.
|
[26] |
Leng, P.; Hu, H.W.; Cui, A.H.; Tang, H.J.; Liu, Y.G. HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage. LWT. 2021, 149, 111963.
|
[27] |
Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942.
|
[28] |
Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; Zhang, N. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880.
|
[29] |
Zhang, K.Y.; Zhang, C.; Zhuang, H.N.; Liu, Y.; Feng, T.; Nie, B. Characterization of volatile component changes in peas under different treatments by GC-IMS and GC-MS. J. Food Qual. 2021, 2021, 6533083.
|
[30] |
Qiao, Y.N.; Bi, J.F.; Chen, Q.Q.; Wu, X.Y.; Gou, M.; Hou, H.N.; Jin, X.W.; Purcaro, G. Volatile profile characterization of winter jujube from different regions via HS-SPME-GC/MS and GC-IMS. J. Food Qual. 2021, 2021, 9958414.
|
[31] |
Li, M.Q.; Yang, R.W.; Zhang, H.; Wang, S.L.; Chen, D.; Lin, S.Y. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39.
|
[32] |
Xie, S.Y.; Yao, K.L.; Wu, X.J.; Lin, X.G.; Han, C.L.; Ling, F.X.; Lian, H.M. Overview of pharmacological research on Semiliquidambar cathayensis H. T. Chang. J. Fujian Forestry Sci. Technol. 2018, 45, 122–127.
|
[33] |
da Silva Vale, A.; de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Rodrigues, C.; Pagnoncelli, M.G.B.; Soccol, C.R. Effect of co-inoculation with pichia fermentans and pediococcus acidilactici on metabolite produced during fermentation and volatile composition of coffee beans. Fermentation. 2019, 5, 67.
|
[34] |
Wang, H.W.; Zhang, X.; Suo, H.Y.; Zhao, X.; Kan, J.Q. Aroma and flavor characteristics of commercial Chinese traditional bacon from different geographical regions. J. Sens. Stud. 2019, 34, e12475.
|
[35] |
Gao, C.; Wang, R.; Zhang, F.; Sun, Z.C.; Meng, X.H. The process monitors of probiotic fermented sour cherry juice based on the HS-GC-IMS. Microchem. J. 2022, 180, 107537.
|
[36] |
Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Ajibade, B.O.; Ijabadeniyi, O.A.; Fedorova, T.V. Analytical characterization of the widely consumed commercialized fermented beverages from Russia (kefir and ryazhenka) and South Africa (amasi and mahewu): potential functional properties and profiles of volatile organic compounds. Foods Basel Switz. 2021, 10, 3082.
|
[37] |
Feng, X.Y.; Wang, H.W.; Wang, Z.R.; Huang, P.M.; Kan, J.Q. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2022, 375, 131671.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 范博, 杨笑, 胡爽. 涡旋辅助-可切换型溶剂液相微萃取用于中药样品中肉桂酸衍生物的分析[J]. 中国药学(英文版), 2023, 32(7): 551-559. |
[3] | 姚昆鹏, 张道平, 刘起立, 蔡虎志, 陈青扬, 陈新宇. 整合生物信息学鉴定与分析急性心肌梗死的特征基因及潜在中药预测[J]. 中国药学(英文版), 2022, 31(12): 912-927. |
[4] | 孙颖光, 岳圆圆, 邵杰敏, 高萌, 邓艳茹, 冯运佳. 康复新液与西瓜霜治疗复发性口腔溃疡疗效比较的meta分析[J]. 中国药学(英文版), 2022, 31(10): 761-772. |
[5] | 高涛, 刘蕾, 吴燕, 杜权. 传统中药王氏保赤丸的临床前毒理研究[J]. 中国药学(英文版), 2022, 31(1): 31-46. |
[6] | 鹿梦秋, 梁海珍, 屠鹏飞, 姜勇. 中药九里香两种不同基原植物的药效学比较研究[J]. 中国药学(英文版), 2021, 30(1): 49-57. |
[7] | 卢紫娟, 贾岩, 邢婕, 肖淑贤, 王玉龙, 秦文杰, 秦雪梅, 李震宇. 基于ITS/ITS2和HPLC指纹图谱技术的款冬花质量评价[J]. 中国药学(英文版), 2021, 30(1): 58-68. |
[8] | 杨红帅, 刘秋怡, 殷卫东, 解满江, 吉翔, 邵双宇, 梁鸿, 屠鹏飞, 张庆英. 酸枣仁和滇枣仁的HPLC指纹图谱分析及鉴别[J]. 中国药学(英文版), 2020, 29(4): 252-259. |
[9] | 田思聪, 薛婧, 宋辉, 杜权. 中药对肠道菌群结构和功能作用的研究[J]. 中国药学(英文版), 2020, 29(3): 161-175. |
[10] | 贾玮娟, 陈世忠, 孙建华, 白宗利, 黄亚卓, 张元宽, 王弘. 基于HPLC特征图谱与指纹图谱分析的中药猪苓质量评价研究[J]. 中国药学(英文版), 2020, 29(12): 896-907. |
[11] | 赵中振, 陈虎彪, 郭平, 梁之桃, 白效龙, 黄丽丽, 刘靖. 中药传统鉴定技术的传承与本草文化推广[J]. 中国药学(英文版), 2020, 29(12): 908-914. |
[12] | 姜媛媛, 王涛, 张慧, 陈欢, 王龙, 张利, 周永红. 高效液相色谱法同时测定甘西鼠尾草中15种成分的含量及其指纹图谱的建立[J]. 中国药学(英文版), 2019, 28(5): 348-359. |
[13] | 焦豪妍, 徐胜梅, 范春林, 张庆文, 王英. 高良姜指纹图谱的建立及主要成分的定量分析[J]. 中国药学(英文版), 2019, 28(10): 728-738. |
[14] | 田溪, 袁叶, 苏子云, 李德强, 董维冲, 杨秀岭. 溶栓胶囊、血脂康胶囊、心元胶囊和松龄血脉康胶囊对大鼠体内氯吡格雷活性代谢产物药动学的影响[J]. 中国药学(英文版), 2017, 26(3): 187-195. |
[15] | 高杨亚雅, 朱尘琪, 郭爽, 邱百灵, 吴迪, 高也, 梁启慧, 韩南银, 张萍. 高效毛细管电泳法测定传统中药拳参中没食子酸含量[J]. 中国药学(英文版), 2016, 25(10): 747-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||