中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (5): 379-391.DOI: 10.5246/jcps.2023.05.032
沈广志1, 崔新刚2, 那志敏3, 邹玉龙4,*(), 邹桂华1,*()
收稿日期:
2022-10-28
修回日期:
2022-11-15
接受日期:
2022-12-18
出版日期:
2023-06-02
发布日期:
2023-06-02
通讯作者:
邹玉龙, 邹桂华
作者简介:
基金资助:
Guangzhi Shen1, Xingang Cui2, Zhimin Na3, Yulong Zou4,*(), Guihua Zou1,*()
Received:
2022-10-28
Revised:
2022-11-15
Accepted:
2022-12-18
Online:
2023-06-02
Published:
2023-06-02
Contact:
Yulong Zou, Guihua Zou
摘要:
本研究利用网络药理学技术和方法分析淫羊藿治疗性功能障碍的活性组分, 并对潜在的靶点与机制进行整合与分析。利用中药系统药理数据库和分析平台(TCMSP)获取淫羊藿的化学成分及活性成分的作用靶点; 运用OMIM数据库获取与性功能障碍相关的靶点; Cytoscape 3.7.1构建药物-活性成分-靶点基因-疾病网络图; STRING数据库构建靶点蛋白互作网络; WebGestalt数据库对核心靶点基因进行基因本体(GO)及京都基因与基因组百科全书(KEGG)相关通路富集分析。该研究从淫羊藿中筛选得到21种有效成分, 从103个疾病目标中筛选得到67个与之相对应的作用靶点。研究结果初步验证了淫羊藿治疗性功能障碍多成分、多靶点、多途径的作用特点, 为淫羊藿治疗性功能障碍的进一步研究提供参考。
Supporting:
沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391.
Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391.
Figure 1. Compound-target network. Red arrows represent active ingredients in Epimedium. Red circles represent targets of Epimedium. Edges represent the interaction between ingredients and targets.
[1] |
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120.
|
[2] |
Gao, L.; Wang, X.D.; Niu, Y.Y.; Duan, D.D.; Yang, X.; Hao, J.; Zhu, C.H.; Chen, D.; Wang, K.X.; Qin, X.M.; Wu, X.Z. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci. Rep. 2016, 6, 24944.
|
[3] |
Park, H.J.; Koo, Y.K.; Park, M.J.; Hwang, Y.K.; Hwang, S.Y.; Park, N.C. Restoration of spermatogenesis using a new combined herbal formula of epimedium koreanum nakai and angelica gigas nakai in an luteinizing hormone-releasing hormone agonist-induced rat model of male infertility. World J. Men’s Heal. 2017, 35, 170–177.
|
[4] |
Zheng, H.; He, B.; Wu, T.X.; Cai, J.; Wei, J.S. Extraction, purification and anti-osteoporotic activity of a polysaccharide from epimedium brevicornum maxim. in vitro. Int. J. Biol. Macromol. 2020, 156, 1135–1145.
|
[5] |
Sze, S.C.; Tong, Y.; Ng, T.B.; Cheng, C.L.; Cheung, H.P. Herba Epimedii: anti-oxidative properties and its medical implications. Molecules. 2010, 15, 7861–7870.
|
[6] |
Yan, F.F.; Liu, Y.; Liu, Y.F.; Zhao, Y.X. Herba Epimedii water extract elevates estrogen level and improves lipid metabolism in postmenopausal women. Phytother. Res. 2008, 22, 1224–1228.
|
[7] |
Zhao, H.; Shan, Y.; Ma, Z.; Yu, M.; Gong, B. A network pharmacology approach to explore active compounds and pharmacological mechanisms of epimedium for treatment of premature ovarian insufficiency. Drug Des. Devel. Ther. 2019, 13, 2997–3007.
|
[8] |
He, J.; Zang, S.L.; Liu, N.; Ji, M.; Ma, D.X.; Ji, C.Y. Epimedium polysaccharides attenuates hematotoxicity by reducing oxidative stress and enhancing immune function in mice model of benzene-induced bone marrow failure. Biomed. Pharmacother. 2020, 125, 109908.
|
[9] |
Shui, Y.M.; Lv, G.Y.; Shan, L.T.; Fan, C.L.; Tian, N.; Zhang, L.; He, T.C.; Gao, J.L. Epimedin C promotes vascularization during BMP2-induced osteogenesis and tumor-associated angiogenesis. Am. J. Chin. Med. 2017, 45, 1093–1111.
|
[10] |
Wang, L.; Li, Y.; Guo, Y.; Ma, R.; Fu, M.; Niu, J.; Gao, S.; Zhang, D. Herba epimedii: an ancient Chinese herbal medicine in the prevention and treatment of osteoporosis. Curr. Pharm. Des. 2016, 22, 328–349.
|
[11] |
Pan, Y.; Kong, L.D.; Li, Y.C.; Xia, X.; Kung, H.F.; Jiang, F.X. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol. Biochem. Behav. 2007, 87, 130–140.
|
[12] |
Chen, G.; Wang, C.; Wang, J.; Yin, S.; Gao, H.; Xiang, L.U.; Liu, H.; Xiong, Y.; Wang, P.; Zhu, X.; Yang, L.I.; Zhang, R. Antiosteoporotic effect of icariin in ovariectomized rats is mediated via the Wnt/β-catenin pathway. Exp. Ther. Med. 2016, 12, 279–287.
|
[13] |
Wang, G.Q.; Li, D.D.; Huang, C.; Lu, D.S.; Zhang, C.; Zhou, S.Y.; Liu, J.; Zhang, F. Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro. Front. Mol. Neurosci. 2017, 10, 441.
|
[14] |
Wei, Z.; Deng, X.; Hong, M.; Su, Q.; Liu, A.; Huang, Y.; Yu, Q.; Peng, Z. Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int. J. Clin. Exp. Med. 2015, 8, 20188–20197.
|
[15] |
Geerkens, M.J.M.; Al-Itejawi, H.H.M.; Nieuwenhuijzen, J.A.; Meuleman, E.J.M.; Lissenberg-Witte, B.I.; van Moorselaar R.J.A.; Vis, A.N. Sexual dysfunction and bother due to erectile dysfunction in the healthy elderly male population: prevalence from a systematic review. Eur. Urol. Focus. 2020, 6, 776–790.
|
[16] |
Zhang, Y.; Zhang, Q.; Shi, Z.Y.; Chen, H.X.; Wang, J.C.; Yan, C.; Du, Q.; Qiu, Y.H.; Zhao, Z.Y.; Zhou, H.Y. Sexual dysfunction in patients with neuromyelitis optica spectrum disorder. J. Neuroimmunol. 2020, 338, 577093.
|
[17] |
McCabe, M.P. Risk factors for sexual dysfunction among women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. J. Sex. Med. 2016, 13, 153–167.
|
[18] |
Wang, Y.; Yu, W.; Shi, C.; Jiao, W.; Li, J.; Ge, J.; Hong, Y.; Shi, G. Network pharmacology of yougui pill combined with buzhong Yiqi Decoction for the treatment of sexual dysfunction. Evid. Based. Complement. Altern. Med. 2019, 2019, 1243743.
|
[19] |
Hatzimouratidis, K.; Amar, E.; Eardley, I.; Giuliano F.; Hatzichristou, D.; Montorsi, F.; Vardi, Y.; Wespes, E. Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur. Urol. 2010, 57, 804–814.
|
[20] |
Porst, H.; Montorsi, F.; Rosen, R.C.; Gaynor, L.; Grupe, S.; Alexander, J. The premature ejaculation prevalence and attitudes (PEPA) survey: prevalence, comorbidities, and professional help-seeking. Eur. Urol. 2007, 51, 816–824.
|
[21] |
Finkelstein, F.O.; Shirani, S.; Wuerth, D.; Finkelstein, S.H. Therapy Insight: sexual dysfunction in patients with chronic kidney disease. Nat. Clin. Pract. Nephrol. 2007, 3, 200–207.
|
[22] |
Soldati, L.; Bianchi-Demicheli, F.; Schockaert, P.; Köhl, J.; Bolmont, M.; Hasler, R.; Perroud, N. Sexual function, sexual dysfunctions, and ADHD: a systematic literature review. J. Sex. Med. 2020, 17, 1653–1664.
|
[23] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[24] |
Xie, W.W.; Wen, X.Q.; Zhang, D.D.; Zhang, Y.Q.; Zhang, Z.Q.; Jin, Y.R.; Du, Y.F. Network pharmacology-based strategy to investigate harmacological mechanisms of Isodon serra (Maxim.) Hara for treatment of inflammatory. J. Chin. Pharm. Sci. 2022, 31, 250–263.
|
[25] |
Zeng, L.T.; Yang, K.L.; Ge, J.W. Uncovering the pharmacological mechanism of astragalus salvia compound on pregnancy-induced hypertension syndrome by a network pharmacology approach. Sci. Rep. 2017, 7, 16849.
|
[26] |
Zhang, Y.Q.; Guo, X.D.; Wang, D.H.; Li, R.S.; Li, X.J.; Xu, Y.; Liu, Z.L.; Song, Z.Q.; Lin, Y.; Li, Z.Y.; Lin, N. A systems biology-based investigation into the therapeutic effects of Gansui Banxia Tang on reversing the imbalanced network of hepatocellular carcinoma. Sci. Rep. 2014, 4, 4154.
|
[27] |
Kochmann, S. Beryllium10: a free and simple tool for creating and managing group safety data sheets. J. Pharmacol. Sci. 2014, 6, 6.
|
[28] |
Tang, H.; He, S.; Zhang, X.; Luo, S.; Zhang, B.; Duan, X.; Zhang, Z.; Wang, W.; Wang, Y.; Sun, Y. A network pharmacology approach to uncover the pharmacological mechanism of XuanHuSuo Powder on osteoarthritis. Evid. Based Complement. Altern. Med. 2016, 2016, 3246946.
|
[29] |
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798.
|
[30] |
Stelzer, G.; Dalah, I.; Stein, T.I.; Satanower, Y.; Rosen, N.; Nativ, N.; Oz-Levi, D.; Olender, T.; Belinky, F.; Bahir, I.; Krug, H.; Perco, P.; Mayer, B.; Kolker, E.; Safran, M.; Lancet, D. In-silico human genomics with GeneCards. Hum. Genom. 2011, 5, 709–717.
|
[31] |
Vlachopoulos, C.; Aznaouridis, K.; Ioakeimidis, N.; Rokkas, K.; Vasiliadou, C.; Alexopoulos, N.; Stefanadi, E.; Askitis, A.; Stefanadis, C. Unfavourable endothelial and inflammatory state in erectile dysfunction patients with or without coronary artery disease. Eur. Heart J. 2006, 27, 2640–2648.
|
[32] |
Libro, R.; Bramanti, P.; Mazzon, E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016, 158, 78–88.
|
[33] |
Vignozzi, L. Estrogen mediates metabolic syndrome-induced erectile dysfunction: a study in the rabbit. J. Sex. Med. 2014, 11, 2890–2902.
|
[34] |
Sargent, K.M.; Clopton, D.T.; Lu, N.; Pohlmeier, W.E.; Cupp, A.S. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res. 2016, 363, 31–45.
|
[35] |
Shirai, M.; Yamanaka, M.; Shiina, H.; Igawa, M.; Ogishima, T.; Fujime, M.; Ishii, N.; Okuyama, A.; Lue, T.F.; Dahiya, R. Androgen, estrogen, and progesterone receptor gene regulation during diabetic erectile dysfunction and insulin treatment. Urology. 2004, 64, 1244–1249.
|
[36] |
Giuliano, F.; Allard, J. Dopamine and male sexual function. Eur. Urol. 2001, 40, 601–608.
|
[37] |
Eldamnhoury, E.M.; Elatrash, G.A.; Rashwan, H.M.; El-Sakka, A.I. Association between leukocytospermia and semen interleukin-6 and tumor necrosis factor-alpha in infertile men. Andrology. 2018, 6, 775–780.
|
[38] |
Wu, L.; Wang, Y.; Nie, J.; Fan, X.; Cheng, Y. A network pharmacology approach to evaluating the efficacy of Chinese medicine using genome-wide transcriptional expression data. Evid. Based Complement. Altern. Med. 2013, 2013, 915343.
|
[1] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[3] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[4] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[5] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[6] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[7] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[8] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[9] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[10] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
[11] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[12] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[13] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[14] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[15] | 赵维萍, 葛奇, 丁子俊, 潘雷枝, 谷子晴, 刘洋, 蔡华. 基于网络药理学和代谢组学分析滁菊中潜在活性成分及其药理作用机制[J]. 中国药学(英文版), 2022, 31(6): 412-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||