[1] |
Liu, Y.Q.; Di, Y.T.; Wang, Y.H.; Hu, X.J. Chemical Constituents from the kernels of Capparis masaikai Lévl. Nat. Prod. Res. Dev. 2017, 29, 415–418.
|
[2] |
Zhang, L.Y.; Xie, Z.H.; Chen, Y.L.; Hu, X.J. Effect of heat processing on oxazolidine of Capparis masaikai LévI. J. Food Process. Preserv. 2020, 44, e14447.
|
[3] |
Zhao, D.X.; Li, C.; Li, T.; Li, Q.; Zhao, G.X.; Chen, L.Y.; Zhou, J.S. Effects of four plant growth regulators on seed germination and seedlings growth of Capparis masaikai. J. South. Agric. 2015, 46, 1834–1838.
|
[4] |
Li, C.; Zhang, J.C.; Zhao, D.X.; Li, Q.; Wang, S.M. Determination of volatile chemical constituents in the peels, seeds and leaves of Capparis masaikai Lévl. by gas chromatography-mass spectrometry. Chin. J. Trop. Agric. 2018, 38, 81–84.
|
[5] |
Liao, J.H.; Yuan, C.M.; Di, Y.T.; He, H.P.; Hu, X.J. A new indole alkaloid from the fruits of Capparis masaikai. Asian J. Chem. 2014, 26, 4504–4506.
|
[6] |
Hu, Z.; He, M.; Liang, L. Isolation and identification of oxazolidine -2- thione in the seeds of Capparis masaikai. Acta Bot. Yunnanica. 1987, 9, 113–115.
|
[7] |
Hirsch, J.A.; Havinga, E. 1-Hetera-4-cyclohexanone system. Proton and carbon-13 magnetic resonance, transannular effects, and conformational analysis. J. Org. Chem. 1976, 41, 455–462.
|
[8] |
Perron, J.; Beauchamp, A.L. Silver complexes with succinimide as models for the interaction of silver (I) with the uracil residue. Inorg. Chem. 1984, 23, 2853–2859.
|
[9] |
Sawai, Y.; Moon, J.H.; Sakata, K.; Watanabe, N. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1, 1-diphenyl-2-picrylhydrazyl radicals. J. Agric. Food Chem. 2005, 53, 3598–3604.
|
[10] |
Canuto, A.V.S.; Echevarria, A. 1H NMR for quantifying sulfide trapping efficiency by using 1, 3, 5-tris(2-hydroxyethyl)-1, 3, 5-triazinane. Magn. Reson. Chem. 2014, 52, 353–357.
|
[11] |
Ciftja, A.F.; Hartono, A.; Svendsen, H.F. 13C NMR as a method species determination in CO2 absorbent systems. Int. J. Greenh. Gas Control. 2013, 16, 224–232.
|
[12] |
Walsh, K.; Sneddon, H.F.; Moody, C.J. Sustainable, mild and efficient p-methoxybenzyl ether deprotections utilizing catalytic DDQ. Tetrahedron. 2014, 70, 7380–7387.
|
[13] |
Ma, Q. Study on chemical components of Aralia eleta seem stem. Yanbian University. 2009.
|
[14] |
Bock, K.; Pedersen, C. Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27–66.
|
[15] |
Miyazaki, Y.; Fujimori, T.; Okita, H.; Hirano, T.; Yoshimura, K. Thermodynamics of complexation reactions of borate and phenylboronate with diol, triol and tetritol. Dalton Trans. 2013, 42, 10473.
|
[16] |
Çalış, İ.; Kuruüzüm-Uz, A.; Lorenzetto, P.A.; Rüedi, P. (6S)-Hydroxy-3-oxo-α-ionol glucosides from Capparis spinosa fruits. Phytochemistry 2002, 59, 451–457
|
[17] |
Yang, T.; Cheng, X.M.; Yu, F.S.; Chou, G.X.; Wang, C.H.; Wang, Z.T. The chemical constituents of Capparis spinosa L. fruits. Northwest Pharm. J. 2010, 25, 260–263.
|
[18] |
Fu, X.P.; Aisa, H.A.; Abdurahim, M.; Yili, A.; Aripova, S.F.; Tashkhodzhaev, B. Chemical composition of Capparis spinosa fruit. Chem. Nat. Compd. 2007, 43, 181–183.
|
[19] |
Ai, F.W.; Zhang, S.; Li, Y.F.; Ma, Y.L. The chemical constituents of Typhonium giganteum. Chin. Trad. Herbal Drugs. 2010, 41, 201–203.
|
[20] |
Liu, R.; Yu, S.S.; Pei, Y.H. Chemical constituents leaves of Albizia chinensis. China J. Chin. Mat. Med. 2009, 34, 2063–2066.
|
[21] |
Dübeler, A.; Voltmer, G.; Gora, V.; Lunderstädt, J.; Zeeck, A. Phenols from Fagus sylvatica and their role in defence against Cryptococcus fagisuga. Phytochemistry. 1997, 45, 51–57.
|
[22] |
Zhang, Y.; Guo, F.; Zeng, P.; Jia, Q.; Li, Y.; Zhu, W.; Chen, K. Phenolic components from Petasites tricholobus. Chin. J. Chin. Mat. Med. 2012, 37, 1782–1787.
|
[23] |
Burton, G.; Ghini, A.A.; Gros, E.G. 13C NMR spectra of substituted indoles. Magn. Reson. Chem. 1986, 24, 829–831.
|
[24] |
Hagemeier, J.; Schneider, B.; Oldham, N.J.; Hahlbrock, K. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc. Natl. Acad. Sci. USA. 2001, 98, 753–758.
|
[25] |
Böttcher, C.; Chapman, A.; Fellermeier, F.; Choudhary, M.; Scheel, D.; Glawischnig, E. The biosynthetic pathway of indole-3-carbaldehyde and indole-3-carboxylic acid derivatives in Arabidopsis. Plant Physiol. 2014, 165, 841–853.
|
[26] |
Zhang, M.; Tang, X.L.; Li, G.Q. Studies on the chemical constituents of the salt-tolerant plants Limonium bicolor in coastal wetlands. Per. Ocean U. Chin. 2010, 40, 89–92.
|
[27] |
Lie Ken Jie, M.S.F.; Lam, C.C. 1H-Nuclear magnetic resonance spectroscopic studies of saturated, acetylenic and ethylenic triacylglycerols. Chem. Phys. Lipids. 1995, 77, 155–171.
|
[28] |
Lie Ken Jie, M.S.F.; Lam, C.C. 13C-Nuclear magnetic resonance spectroscopic studies of triacylglycerols of type AAA containing (Z)- and (E)-monoethylenic acyl groups. Chem. Phys. Lipids. 1995, 78, 15–27.
|