中国药学(英文版) ›› 2020, Vol. 29 ›› Issue (9): 656-665.DOI: 10.5246/jcps.2020.09.061
• 【“现代仪器技术在药物研究中的应用”系列综述】 • 上一篇 下一篇
王倩*, 王静, 宋书香, 朱贵旺, 曹泽, 刘振明*
收稿日期:
2020-07-15
修回日期:
2020-08-30
出版日期:
2020-09-30
发布日期:
2020-09-05
通讯作者:
Tel: +86-10-82801437, E-mail: qian.wang@bjmu.edu.cn; zmliu@bjmu.edu.cn
Qian Wang*, Jing Wang, Shuxiang Song, Guiwang Zhu, Ze Cao, Zhenming Liu*
Received:
2020-07-15
Revised:
2020-08-30
Online:
2020-09-30
Published:
2020-09-05
Contact:
Tel: +86-10-82801437, E-mail: qian.wang@bjmu.edu.cn; zmliu@bjmu.edu.cn
摘要:
中图分类号:
Supporting:
王倩, 王静, 宋书香, 朱贵旺, 曹泽, 刘振明. 微量热泳动技术在生物分子相互作用研究中的应用[J]. 中国药学(英文版), 2020, 29(9): 656-665.
Qian Wang, Jing Wang, Shuxiang Song, Guiwang Zhu, Ze Cao, Zhenming Liu. Microscale thermophoresis in the investigation of biomolecular interactions[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 656-665.
[1] Citartan, M.; Gopinath, S.C.; Tominaga, J.; Tang, T.H. Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst. 2013, 138, 3576-3592.
[2] Zheng, X.W.; Li, Z.; Beeram, S.; Podariu, M.; Matsuda, R.; Pfaunmiller, E.L.; White, C.J.; Carter, N.; Hage, D.S. Analysis of biomolecular interactions using affinity microcolumns: a review. J. Chromatogr. B. 2014, 968, 49-63.
[3] Zheng, X.; Bi, C.; Li, Z.; Podariu, M.; Hage, D.S. Analytical Methods for Kinetic Studies of Biological Interactions: A Review. J. Pharm. Biomed. Anal. 2015, 113, 163-180.
[4] Hellman, L.M.; Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2007, 2, 1849-1861.
[5] Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry. 1971, 8, 871-874.
[6] Fathi, F.; Ezzati Nazhad Dolatanbadi, J.; Rashidi, M.R.; Omidi, Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int. J. Biol. Macromol. 2016, 91, 1045-1050.
[7] Sikarwar, B.; Singh, V.; Sharma, P.K.; Kumar, A.; Thavaselvam, D.; Boopathi, M.; Singh, B.; Jaiswal, Y.K. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens. Bioelectron. 2017, 87, 964-969.
[8] Fabini, E.; Danielson, U.H. Monitoring drug-serum protein interactions for early ADME prediction through Surface Plasmon Resonance technology. J. Pharm. Biomed. Anal. 2017, 144, 188-194.
[9] Braia, M.; Loureiro, D.; Tubio, G.; Lienqueo, M.E.; Romanini, D. Interaction between trypsin and alginate: an ITC and DLS approach to the formation of insoluble complexes. Colloids Surf. B. Biointerfaces. 2017, 155, 507-511.
[10] Yang, L.Y.; Hua, S.Y.; Zhou, Z.Q.; Wang, G.C.; Jiang, F.L.; Liu, Y. Characterization of fullerenol-protein interactions and an extended investigation on cytotoxicity. Colloids. Surf. B. Biointerfaces. 2017, 157, 261-267.
[11] Li, Z.G.; Wang, Z.C.; Wang, N.; Han, X.X.; Yu, W.Q.; Wang, R.Y.; Chang, J.B. Identification of the binding between three fluoronucleoside analogues and fat mass and obesity-associated protein by isothermal titration calorimetry and spectroscopic techniques. J. Pharm. Biomed. Anal. 2018, 149, 290-295.
[12] Seidel, S.A.I.; Dijkman, P.M.; Lea, W.A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J.S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; Katritch, I.; Melo, F.A.; Ladbury, J.E.; Schreiber, G.; Watts, A.; Braun, D.; Duhr, S. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013, 59, 301-315.
[13] Mao, Y.; Yu, L.; Yang, R.; Ma, C.; Qu, L. B.; Harrington Pde, B. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20. Talanta. 2016, 148, 380-386.
[14] Ma, J.; Liu, N.; Li, L.; Ma, X.H.; Li, X.L.; Liu, Y.N.; Li, Y.; Zhou, Z.J.; Gao, Z.X. An evaluation assay for thymine-mercuric-thymine coordination in the molecular beacon-binding system based on microscale thermophoresis. Sensor Actuat. B: Chem. 2017, 252, 680-688.
[15] Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100.
[16] Braun, D.; Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 2002, 89, 188103.
[17] Reineck, P.; Wienken, C.J.; Braun, D. Thermophoresis of single stranded DNA. Electrophoresis. 2010, 31, 279-286.
[18] Jerabek-Willemsen, M.; Andre, T.; Wanner, R.; Roth, H.M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale thermophoresis: interaction analysis and beyond. J. Mol. Struct. 2014, 1077, 101-113.
[19] Mao, Y.; Yu, L.; Yang, R.; Qu, L.B.; Harrington Pde, B. A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta. 2015, 132, 894-901.
[20] Asmari, M.; Ratih, R.; Alhazmi, H.A.; El Deeb, S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018, 146, 107-119.
[21] Weinstabl, H.; Treu, M.; Rinnenthal, J.; Zahn, S.K.; Ettmayer, P.; Bader, G.; Dahmann, G.; Kessler, D.; Rumpel, K.; Mischerikow, N.; Savarese, F.; Gerstberger, T.; Mayer, M.; Zoephel, A.; Schnitzer, R.; Sommergruber, W.; Martinelli, P.; Arnhof, H.; Peric-Simov, B.; Hofbauer, K.S.; Garavel, G.; Scherbantin, Y.; Mitzner, S.; Fett, T.N.; Scholz, G.; Bruchhaus, J.; Burkard, M.; Kousek, R.; Ciftci, T.; Sharps, B.; Schrenk, A.; Harrer, C.; Haering, D.; Wolkerstorfer, B.; Zhang, X.; Lv, X.; Du, A.; Li, D.; Li, Y.; Quant, J.; Pearson, M.; McConnell, D.B. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 2019, 62, 7976-7997.
[22] Wang, D.; Zhang, S.; Li, L.; Liu, X.; Mei, K.; Wang, X. Structural Insights into the Assembly and Activation of Il-1β with Its Receptors. Nat. Immunol. 2010, 11, 905-911.
[23] Auron, P.E. The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev. 1998, 9, 221-237.
[24] Vigers, G.P.; Anderson, L.J.; Caffes, P.; Brandhuber, B.J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature. 1997, 386, 190-194.
[25] Sims, J.E. Accessory to inflammation. Nat. Immunol. 2010, 11, 883-885.
[26] Dhimolea, E. Canakinumab. MAbs. 2010, 2, 3-13.
[27] Schlesinger, N.; Mysler, E.; Lin, H.Y.; de Meulemeester, M.; Rovensky, J.; Arulmani, U.; Balfour, A.; Krammer, G.; Sallstig, P.; So, A. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann. Rheum. Dis. 2011, 70, 1264-1271.
[28] Geiler, J.; McDermott, M.F. Gevokizumab, an anti-IL-1β MAb for the potential treatment of type 1 and 2 diabetes, rheumatoid arthritis and cardiovascular disease. Curr. Opin. Mol. Ther. 2010, 12, 755.
[29] Owyang, A.M.; Issafras, H.; Corbin, J.; Ahluwalia, K.; Larsen, P.; Pongo, E.; Handa, M.; Horwitz, A.H.; Roell, M.K.; Haak-Frendscho, M.; Masat, L. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases. MAbs. 2011, 3, 49-60.
[30] Roell, M.K.; Issafras, H.; Bauer, R.J.; Michelson, K.S.; Mendoza, N.; Vanegas, S.I.; Gross, L.M.; Larsen, P.D.; Bedinger, D.H.; Bohmann, D.J.; Nonet, G.H.; Liu, N.C.; Lee, S.R.; Handa, M.; Kantak, S.S.; Horwitz, A.H.; Hunter, J.J.; Owyang, A.M.; Mirza, A.M.; Corbin, J.A.; White, M.L. Kinetic approach to pathway attenuation using XOMA 052, a regulatory therapeutic antibody that modulates interleukin-1β activity. J. Biol. Chem. 2010, 285, 20607-20614.
[31] Blech, M.; Peter, D.; Fischer, P.; Bauer, M.M.; Hafner, M.; Zeeb, M.; Nar, H. One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β. J. Mol. Biol. 2013, 425, 94-111.
[32] Walls, A.C.; Tortorici, M.A.; Bosch, B.J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016, 531, 114-117.
[33] Du, L.Y.; He, Y.X.; Zhou, Y.S.; Liu, S.W.; Zheng, B.J.; Jiang, S.B. The spike protein of SARS-CoV: a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009, 7, 226-236.
[34] Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 2003, 77, 8801-8811.
[35] Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G.P.; Davies, S.W.; Lehrach, H.; Wanker, E.E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997, 90, 549-558.
[36] Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19, 5720-5728.
[37] Li, Z.; Wang, C.; Wang, Z.; Zhu, C.; Li, J.; Sha, T.; Ma, L.; Gao, C.; Yang, Y.; Sun, Y.; Wang, J.; Sun, X.; Lu, C.; Difiglia, M.; Mei, Y.; Ding, C.; Luo, S.; Dang, Y.; Ding, Y.; Fei, Y.; Lu, B. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. 2019, 575, 203-209.
[38] Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; Zazimalova, E.; Benkova, E.; Nacry, P.; Gojon, A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell. 2010, 18, 927-937.
[39] Parker, J.L.; Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature. 2014, 507, 68-72.
[40] Simonsson, T. G-quadruplex DNA structures: variations on a theme. Biol. Chem. 2001, 382, 621-628.
[41] Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 2016, 59, 5987-6011.
[42] Pelliccia, S.; Amato, J.; Capasso, D.; Di Gaetano, S.; Massarotti, A.; Piccolo, M.; Irace, C.; Tron, G.C.; Pagano, B.; Randazzo, A.; Novellino, E.; Giustiniano, M. Bio-inspired dual-selective BCL-2/c-MYC G-quadruplex binders: design, synthesis, and anticancer activity of drug-like imidazo[2, 1-i]purine derivatives. J. Med. Chem. 2020, 63, 2035-2050.
[43] Qu, Y.; Gharbi, N.; Yuan, X.; Olsen, J.R.; Blicher, P.; Dalhus, B.; Brokstad, K.A.; Lin, B.; Øyan, A.M.; Zhang, W.; Kalland, K.H.; Ke, X. Axitinib Blocks Wnt/β-catenin signaling and directs asymmetric cell Division in cancer. Proc. Natl. Acad. Sci. USA. 2016, 113, 9339-9344.
[44] Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 2014, 13, 513-532.
[45] Owczarzy, R.; Tataurov, A.V.; Wu, Y.; Manthey, J.A.; McQuisten, K.A.; Almabrazi, H.G.; Pedersen, K.F.; Lin, Y.; Garretson, J.; McEntaggart, N.O.; Sailor, C.A.; Dawson, R.B.; Peek, A.S. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008, 36, W163-W169.
[46] Vanecko, S.; Laskowski, M. Sr. Studies of the specificity of deoxyribonuclease I. III. Hydrolysis of chains carrying a monoesterified phosphate on carbon 5'. J. Biol. Chem. 1961, 236, 3312-3316.
[47] Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin. Ther. Pat. 2013, 23, 705-716.
[48] Rodionova, N.A.; Semisotnov, G.V.; Kutyshenko, V.P.; Uverskiĭ, V.N.; Bolotina, I.A. Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol. Biol. (Mosk). 1989, 23, 683-692.
[49] Uverskiĭ, V.N.; Ptitsyn, O.B. Three-stage equilibrium unfolding of small globular proteins by denaturing agents. I. Carboanhydrase B. Mol. Biol. (Mosk). 1996, 30, 1124-1134.
[50] Yazgan, A.; Henkens, R.W. Role of zinc (II) in the refolding of guanidine hydrochloride denatured bovine carbonic anhydrase. Biochemistry. 1972, 11, 1314-1318. |
[1] | 李文哲, 袁霞, 徐波, 宋书香. 多色免疫组化/荧光联合多光谱成像技术在肿瘤免疫治疗领域的应用[J]. 中国药学(英文版), 2020, 29(10): 734-747. |
[2] | 周毅, 赖俊莉, 邱峰, 张军. 高效液相色谱法常规监测中国胃肠间质瘤患者体内的伊马替尼血药浓度[J]. 中国药学(英文版), 2020, 29(9): 637-648. |
[3] | 马雯, 宋书香, 李军. 表面辅助激光解吸/离子化质谱技术用于药物和代谢物分析[J]. 中国药学(英文版), 2020, 29(8): 577-590. |
[4] | 刘少静, 秦蓓, 韩红芳, 李立, 余丽丽, 徐小静. 硅胶柱层析和半制备液相色谱法从曲克芦丁母液中分离制备高纯度曲克芦丁及有关物质[J]. 中国药学(英文版), 2020, 29(7): 487-493. |
[5] | 王静, 王倩, 宋书香. 表面等离子共振技术在药物研发领域的应用进展[J]. 中国药学(英文版), 2020, 29(7): 504-513. |
[6] | 杜嘉琳, 杨凉九, 卫克昭, 龚灿, 高建平, 许旭. 三甲基硅烷衍生化GC-MS测定兔血浆中的游离脂肪酸[J]. 中国药学(英文版), 2020, 29(6): 411-421. |
[7] | 李雪娇, 董建伟, 高秀, 李贵军, 史俊友, 张艳清. 定量核磁共振氢谱法对徐长卿中丹皮酚含量的快速提取和含量测定[J]. 中国药学(英文版), 2020, 29(6): 422-430. |
[8] | 孙玉芳, 郑晨, 徐波. Moflo XDP高速细胞分选技巧与参数优化研究[J]. 中国药学(英文版), 2020, 29(5): 355-363. |
[9] | 刘晓婷, 徐静娜, 肖坤, 郭强胜, 许旭. 固相萃取-定量核磁共振波谱法测定双黄连胶囊中的绿原酸[J]. 中国药学(英文版), 2020, 29(4): 227-235. |
[10] | 张素芳, 李聪, 张莹, 邹俊诚, 崔银株, 凌笑梅. 用电化学方法测定体外聚集过程中β淀粉样多肽含量[J]. 中国药学(英文版), 2020, 29(3): 199-205. |
[11] | 邹悦, 李阳, 韩南银. 重力场流分离技术对山药、红薯、木薯淀粉的分离和表征[J]. 中国药学(英文版), 2020, 29(2): 113-122. |
[12] | 宋书香. 大型仪器平台建设与开放运行管理[J]. 中国药学(英文版), 2020, 29(2): 130-138. |
[13] | 冀希炜, 康子胜, 李耘, 杨西平, 马西凤, 石崇铁, 吕媛. 液相色谱-串联质谱测定感染小鼠血浆中百纳培南: 方法学的建立、验证及其药物动力学研究应用[J]. 中国药学(英文版), 2019, 28(11): 802-811. |
[14] | 李瑞燕, 赵明波, 屠鹏飞, 姜勇. 一标多测法同时测定肉苁蓉中5种苯乙醇苷类成分的含量[J]. 中国药学(英文版), 2019, 28(8): 537-546. |
[15] | 许迎利, 白光灿, 卢景雰. 高校仪器共享平台电子顺磁共振波谱仪的管理[J]. 中国药学(英文版), 2019, 28(7): 519-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||